Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 176(20): 4050-4064, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31378925

RESUMO

BACKGROUND AND PURPOSE: Corticosteroids are intra-articularly injected to relieve pain in joints with osteoarthritis (OA) or acute tissue damage such as ligament or tendon tears, despite its unverified contraindication in unstable joints. Biomaterial-based sustained delivery may prolong reduction of inflammatory pain, while avoiding harmful peak drug concentrations. EXPERIMENTAL APPROACH: The applicability of prolonged corticosteroid exposure was examined in a rat model of anterior cruciate ligament and medial meniscus transection (ACLT + pMMx) with ensuing degenerative changes. KEY RESULTS: Intra-articular injection of a bolus of the corticosteroid triamcinolone acetonide (TAA) resulted in enhanced joint instability in 50% of the joints, but neither instability-induced OA cartilage degeneration, synovitis, nor the OA-related bone phenotype was affected. However, biomaterial microsphere-based extended TAA release enhanced instability in 94% of the animals and induced dystrophic calcification and exacerbation of cartilage degeneration. In healthy joints, injection with TAA releasing microspheres had no effect at all. In vitro, TAA inhibited cell migration out of joint tissue explants, suggesting inhibited tissue healing in vivo as mechanisms for enhanced instability and subsequent cartilage degeneration. CONCLUSIONS AND IMPLICATIONS: We conclude that short-term TAA exposure has minor effects on surgically induced unstable joints, but its extended presence is detrimental by extending instability and associated joint degeneration through compromised healing. This supports a contraindication of prolonged corticosteroid exposure in tissue damage-associated joint instability, but not of brief exposure.


Assuntos
Instabilidade Articular/tratamento farmacológico , Osteoartrite/tratamento farmacológico , Triancinolona Acetonida/efeitos adversos , Cicatrização/efeitos dos fármacos , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/efeitos adversos , Modelos Animais de Doenças , Feminino , Injeções Intra-Articulares , Instabilidade Articular/cirurgia , Microesferas , Osteoartrite/metabolismo , Osteoartrite/cirurgia , Ratos , Ratos Sprague-Dawley , Triancinolona Acetonida/administração & dosagem , Triancinolona Acetonida/uso terapêutico
2.
Drug Deliv ; 26(1): 226-236, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30843733

RESUMO

Inflammation of the synovium and joint capsule is a main driver of pain in an osteoarthritic (OA) joint. Triamcinolone acetonide (TAA) is a classical corticosteroid that reduces synovitis and alleviates pain, albeit transiently. Biomaterial-based local TAA release may prolong the suppression of pain without the need for multiple injections. Polylactic-co-glycolic acid (PLGA) formulations of TAA prolong OA pain relief to a limited extent. A novel polyesteramide (PEA) microsphere platform allows for extended release in the OA joint for over 3 months. To evaluate their effect on pain and inflammation, TAA-loaded microspheres were intra-articularly delivered to the knee joint in a rat model of acute arthritis induced by intra-articular injection of streptococcal cell wall peptidoglycan-polysaccharide (PGPS) and subsequent flare-ups by intravenous PGPS injections. PEA-loaded microspheres were benchmarked with TAA-loaded PLGA microspheres and bolus TAA injection. TAA treatments were injected intra-articularly before the first induced flare-up. TAA-loaded PEA and PLGA microspheres reduced joint swelling and signs of pain-like behavior over the entire study period, as assessed by weight bearing and referred mechanical hypersensitivity, whereas bolus suspension was effective for a shorter time period. TAA-loaded PEA microspheres reduced lameness to a greater extent than TAA-loaded PLGA microspheres. In conclusion, a single intra-articular injection of TAA-loaded PEA microspheres reduced joint swelling and induced longer pain relief compared to bolus injection. Hence relief of inflammation and pain by PEA-based delivery of TAA may prove to be effective and durable.


Assuntos
Materiais Biocompatíveis/farmacologia , Inflamação/tratamento farmacológico , Osteoartrite/tratamento farmacológico , Dor/tratamento farmacológico , Triancinolona Acetonida/farmacologia , Resinas Acrílicas/química , Animais , Materiais Biocompatíveis/química , Modelos Animais de Doenças , Feminino , Injeções Intra-Articulares/métodos , Articulação do Joelho/efeitos dos fármacos , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos , Ratos Sprague-Dawley , Membrana Sinovial/efeitos dos fármacos , Triancinolona Acetonida/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...