Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967999

RESUMO

CD8+ T cells are perceived to play a major role in the pathogenesis of type 1 diabetes (T1D). In this study, we characterized the function and phenotype of circulating CD8+ memory T cells in samples from individuals at different stages of T1D progression using flow cytometry and single-cell multiomics. We observed two distinct CD8+ T-cell signatures during progression of T1D within the highly differentiated CD27-CD8+ memory T cell subset. A proinflammatory signature, with an increased frequency of IFN-γ+TNF-α+ CD27-CD8+ memory T cells, was observed in children with newly diagnosed T1D (stage 3) and correlated with the level of dysglycemia at diagnosis. In contrast, a co-inhibitory signature, with an increased frequency of KLRG1+TIGIT+ CD27-CD8+ memory T cells, was observed in islet autoantibody-positive children who later progressed to T1D (stage 1). No alterations within CD27-CD8+ memory T cells were observed in adults with established T1D or in children during the initial seroconversion to islet autoantibody positivity. Single-cell multiomics analyses suggested that CD27-CD8+ T cells expressing the IFNG+TNF+ proinflammatory signature may be distinct from those expressing the KLRG1+TIGIT+ co-inhibitory signature at the single-cell level. Collectively, our findings suggest that distinct blood CD8+ T-cell signatures could be employed as potential biomarkers of T1D progression.

2.
Front Immunol ; 14: 1157265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415982

RESUMO

IL-21 is a multifunctional cytokine linked with the pathophysiology of several autoimmune diseases, including type 1 diabetes. In this study, our aim was to examine plasma IL-21 levels in individuals at different stages of type 1 diabetes progression. We measured plasma IL-21 levels, as well as levels of other key pro-inflammatory cytokines (IL-17A, TNF-α and IL-6), from 37 adults with established type 1 diabetes and 46 healthy age-matched adult controls, as well as from 53 children with newly diagnosed type 1 diabetes, 48 at-risk children positive for type 1 diabetes-associated autoantibodies and 123 healthy age-matched pediatric controls using the ultrasensitive Quanterix SiMoA technology. Adults with established type 1 diabetes had higher plasma IL-21 levels compared to healthy controls. However, the plasma IL-21 levels showed no statistically significant correlation with clinical variables, such as BMI, C-peptide, HbA1c, or hsCRP levels, evaluated in parallel. In children, plasma IL-21 levels were almost ten times higher than in adults. However, no significant differences in plasma IL-21 levels were detected between healthy children, autoantibody-positive at-risk children, and children with newly diagnosed type 1 diabetes. In conclusion, plasma IL-21 levels in adults with established type 1 diabetes were increased, which may be associated with autoimmunity. The physiologically high plasma IL-21 levels in children may, however, reduce the potential of IL-21 as a biomarker for autoimmunity in pediatric subjects.


Assuntos
Diabetes Mellitus Tipo 1 , Interleucina-17 , Adulto , Criança , Humanos , Autoanticorpos , Biomarcadores , Citocinas , Interleucinas
3.
Data Brief ; 47: 109003, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36915639

RESUMO

The metagenomic data presented in this article are related to the published research of "A Placebo-controlled double-blinded test of the biodiversity hypothesis of immune-mediated diseases: Environmental microbial diversity elicits changes in cytokines and increase in T regulatory cells in young children" This database contains 16S ribosomal RNA (rRNA) metagenomics of sandbox sand and skin and gut microbiota of children in the intervention and placebo daycares. In intervention daycares, children aged 3-5 years were exposed to playground sand enriched with microbially diverse soil. In placebo daycares, children were exposed to visually similar as in intervention daycares, but microbially poor sand colored with peat. Sand, skin and gut metagenomics were analyzed at baseline and after 14 and 28 days of intervention by high throughput sequencing of bacterial 16S rRNA gene on the Illumina MiSeq platform. This dataset shows how skin bacterial community composition, including classes Gammaproteobacteria and Bacilli, changed, and how the relative abundance of over 30 bacterial genera shifted on the skin of children in the intervention treatment, while no shifts occurred in the placebo group.

4.
Ecotoxicol Environ Saf ; 242: 113900, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35930838

RESUMO

BACKGROUND: According to the biodiversity hypothesis of immune-mediated diseases, lack of microbiological diversity in the everyday living environment is a core reason for dysregulation of immune tolerance and - eventually - the epidemic of immune-mediated diseases in western urban populations. Despite years of intense research, the hypothesis was never tested in a double-blinded and placebo-controlled intervention trial. OBJECTIVE: We aimed to perform the first placebo-controlled double-blinded test that investigates the effect of biodiversity on immune tolerance. METHODS: In the intervention group, children aged 3-5 years were exposed to playground sand enriched with microbially diverse soil, or in the placebo group, visually similar, but microbially poor sand colored with peat (13 participants per treatment group). Children played twice a day for 20 min in the sandbox for 14 days. Sand, skin and gut bacterial, and blood samples were taken at baseline and after 14 days. Bacterial changes were followed for 28 days. Sand, skin and gut metagenome was determined by high throughput sequencing of bacterial 16 S rRNA gene. Cytokines were measured from plasma and the frequency of blood regulatory T cells was defined as a percentage of total CD3 +CD4 + T cells. RESULTS: Bacterial richness (P < 0.001) and diversity (P < 0.05) were higher in the intervention than placebo sand. Skin bacterial community, including Gammaproteobacteria, shifted only in the intervention treatment to resemble the bacterial community in the enriched sand (P < 0.01). Mean change in plasma interleukin-10 (IL-10) concentration and IL-10 to IL-17A ratio supported immunoregulation in the intervention treatment compared to the placebo treatment (P = 0.02). IL-10 levels (P = 0.001) and IL-10 to IL-17A ratio (P = 0.02) were associated with Gammaproteobacterial community on the skin. The change in Treg frequencies was associated with the relative abundance of skin Thermoactinomycetaceae 1 (P = 0.002) and unclassified Alphaproteobacteria (P < 0.001). After 28 days, skin bacterial community still differed in the intervention treatment compared to baseline (P < 0.02). CONCLUSIONS: This is the first double-blinded placebo-controlled study to show that daily exposure to microbial biodiversity is associated with immune modulation in humans. The findings support the biodiversity hypothesis of immune-mediated diseases. We conclude that environmental microbiota may contribute to child health, and that adding microbiological diversity to everyday living environment may support immunoregulation.


Assuntos
Interleucina-10 , Interleucina-17 , Bactérias/genética , Biodiversidade , Pré-Escolar , Citocinas , Método Duplo-Cego , Humanos , Areia , Linfócitos T Reguladores
5.
Biomed Pharmacother ; 131: 110701, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32905943

RESUMO

Sirtuin 6 (SIRT6), a member of sirtuin family (SIRT1-7), regulates distinct cellular functions; genome stability, DNA repair, and inflammation related diseases. Recently, we demonstrated that anthocyanidins in berries induce the catalytic activity of SIRT6. In this study, we explored the effects of Galloflavin and Ellagic acid, the most common polyphenols in berries, on SIRT6. SIRT6 deacetylation was investigated using HPLC and immunoblotting assays. The expression levels of SIRT6, glycolytic proteins and cellular metabolism were studied on human colon adenocarcinoma cells (Caco2). Molecular docking studies were carried out to study possible interactions of the compounds with sirtuins. Ellagic acid increased the deacetylase activity of SIRT6 by up to 50-fold; it showed moderate inhibition of SIRT1-3. Galloflavin and Ellagic acid showed anti-proliferative effects on Caco2. The compounds also upregulated SIRT6 expression whereas key proteins in glycolysis were downregulated. Galloflavin decreased glucose transporter 1 (GLUT1) expression, and Ellagic acid affected the expression of protein dehydrogenase kinase 1 (PDK1). Interestingly, both compounds caused reduction in glucose uptake and lactate production. Both Galloflavin and Ellagic acid were able to form hydrogen bonds with Asp188 and Gly6 in SIRT6. In this study, we showed that Galloflavin and Ellagic acid increased SIRT6 activity and decreased the expression of SIRT6 associated proteins involved in cancer development. Taken together, Galloflavin and Ellagic acid targeting SIRT6 activity may provide a new insight in the development of anti-cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Ácido Elágico/farmacologia , Isocumarinas/farmacologia , Sirtuínas/metabolismo , Acetilação , Células CACO-2 , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Humanos , Simulação de Acoplamento Molecular , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Sirtuínas/química
6.
Diabetologia ; 63(11): 2396-2409, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32880687

RESUMO

AIMS/HYPOTHESIS: Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognise derivatives of bacterial riboflavin metabolites presented by MHC-Ib-related protein 1 (MR1) molecules and are important effector cells for mucosal immunity. Their development can be influenced by the intestinal microbiome. Since the development of type 1 diabetes has been associated with changes in the gut microbiome, this can be hypothesised to lead to alterations in circulating MAIT cells. Accordingly, peripheral blood MAIT cell alterations have been reported previously in patients with type 1 diabetes. However, a comprehensive analysis of the frequency and phenotype of circulating MAIT cells at different stages of type 1 diabetes progression is currently lacking. METHODS: We analysed the frequency, phenotype and functionality of peripheral blood MAIT cells, as well as γδ T cells, invariant natural killer T (iNKT) cells and natural killer (NK) cells with flow cytometry in a cross-sectional paediatric cohort (aged 2-15) consisting of 51 children with newly diagnosed type 1 diabetes, 27 autoantibody-positive (AAb+) at-risk children, and 113 healthy control children of similar age and HLA class II background. The frequency of MAIT cells was also assessed in a separate cross-sectional adult cohort (aged 19-39) of 33 adults with established type 1 diabetes and 37 healthy individuals of similar age. RESULTS: Children with newly diagnosed type 1 diabetes displayed a proportional increase of CD8-CD27- MAIT cells compared with healthy control children (median 4.6% vs 3.1% of MAIT cells, respectively, p = 0.004), which was associated with reduced expression of C-C chemokine receptor (CCR)5 (median 90.0% vs 94.3% of MAIT cells, p = 0.02) and ß7 integrin (median 73.5% vs 81.7% of MAIT cells, p = 0.004), as well as decreased production of IFN-γ (median 57.1% vs 69.3% of MAIT cells, p = 0.04) by the MAIT cells. The frequency of MAIT cells was also decreased in AAb+ children who later progressed to type 1 diabetes compared with healthy control children (median 0.44% vs 0.96% of CD3+ T cells, p = 0.04), as well as in adult patients with a short duration of type 1 diabetes (less than 6 years after diagnosis) compared with control individuals (median 0.87% vs 2.19% of CD3+ T cells, p = 0.007). No alterations in γδ T cell, iNKT cell or NK cell frequencies were observed in children with type 1 diabetes or in AAb+ children, with the exception of an increased frequency of IL-17A+ γδ T cells in children with newly diagnosed diabetes compared with healthy control children (median 1.58% vs 1.09% of γδ T cells, p = 0.002). CONCLUSIONS/INTERPRETATION: Changes in the frequency and phenotype of circulating MAIT cells were detectable before, at the onset and after diagnosis of type 1 diabetes in cross-sectional cohorts. Our results suggest a possible temporal association between peripheral blood MAIT cell alterations and the clinical onset of type 1 diabetes. Graphical abstract.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Adulto , Células Cultivadas , Estudos Transversais , Feminino , Citometria de Fluxo , Humanos , Imunidade Inata/imunologia , Imunidade Inata/fisiologia , Masculino , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...