Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Top Cogn Sci ; 9(2): 343-373, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28176449

RESUMO

In line with Allen Newell's challenge to develop complete cognitive architectures, and motivated by a recent proposal for a unifying subsymbolic computational theory of cognition, we introduce the cognitive control architecture SEMLINCS. SEMLINCS models the development of an embodied cognitive agent that learns discrete production rule-like structures from its own, autonomously gathered, continuous sensorimotor experiences. Moreover, the agent uses the developing knowledge to plan and control environmental interactions in a versatile, goal-directed, and self-motivated manner. Thus, in contrast to several well-known symbolic cognitive architectures, SEMLINCS is not provided with production rules and the involved symbols, but it learns them. In this paper, the actual implementation of SEMLINCS causes learning and self-motivated, autonomous behavioral control of the game figure Mario in a clone of the computer game Super Mario Bros. Our evaluations highlight the successful development of behavioral versatility as well as the learning of suitable production rules and the involved symbols from sensorimotor experiences. Moreover, knowledge- and motivation-dependent individualizations of the agents' behavioral tendencies are shown. Finally, interaction sequences can be planned on the sensorimotor-grounded production rule level. Current limitations directly point toward the need for several further enhancements, which may be integrated into SEMLINCS in the near future. Overall, SEMLINCS may be viewed as an architecture that allows the functional and computational modeling of embodied cognitive development, whereby the current main focus lies on the development of production rules from sensorimotor experiences.


Assuntos
Cognição , Aprendizagem , Humanos , Motivação
2.
Artigo em Inglês | MEDLINE | ID: mdl-26217215

RESUMO

Although an action observation network and mirror neurons for understanding the actions and intentions of others have been under deep, interdisciplinary consideration over recent years, it remains largely unknown how the brain manages to map visually perceived biological motion of others onto its own motor system. This paper shows how such a mapping may be established, even if the biologically motion is visually perceived from a new vantage point. We introduce a learning artificial neural network model and evaluate it on full body motion tracking recordings. The model implements an embodied, predictive inference approach. It first learns to correlate and segment multimodal sensory streams of own bodily motion. In doing so, it becomes able to anticipate motion progression, to complete missing modal information, and to self-generate learned motion sequences. When biological motion of another person is observed, this self-knowledge is utilized to recognize similar motion patterns and predict their progress. Due to the relative encodings, the model shows strong robustness in recognition despite observing rather large varieties of body morphology and posture dynamics. By additionally equipping the model with the capability to rotate its visual frame of reference, it is able to deduce the visual perspective onto the observed person, establishing full consistency to the embodied self-motion encodings by means of active inference. In further support of its neuro-cognitive plausibility, we also model typical bistable perceptions when crucial depth information is missing. In sum, the introduced neural model proposes a solution to the problem of how the human brain may establish correspondence between observed bodily motion and its own motor system, thus offering a mechanism that supports the development of mirror neurons.

3.
Front Psychol ; 5: 1287, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25538637

RESUMO

The categorization of real world objects is often reflected in the similarity of their visual appearances. Such categories of objects do not necessarily form disjunct sets of objects, neither semantically nor visually. The relationship between categories can often be described in terms of a hierarchical structure. For instance, tigers and leopards build two separate mammalian categories, both of which are subcategories of the category Felidae. In the last decades, the unsupervised learning of categories of visual input stimuli has been addressed by numerous approaches in machine learning as well as in computational neuroscience. However, the question of what kind of mechanisms might be involved in the process of subcategory learning, or category refinement, remains a topic of active investigation. We propose a recurrent computational network architecture for the unsupervised learning of categorial and subcategorial visual input representations. During learning, the connection strengths of bottom-up weights from input to higher-level category representations are adapted according to the input activity distribution. In a similar manner, top-down weights learn to encode the characteristics of a specific stimulus category. Feedforward and feedback learning in combination realize an associative memory mechanism, enabling the selective top-down propagation of a category's feedback weight distribution. We suggest that the difference between the expected input encoded in the projective field of a category node and the current input pattern controls the amplification of feedforward-driven representations. Large enough differences trigger the recruitment of new representational resources and the establishment of additional (sub-) category representations. We demonstrate the temporal evolution of such learning and show how the proposed combination of an associative memory with a modulatory feedback integration successfully establishes category and subcategory representations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...