Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Mol Biol ; 434(9): 167522, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35248543

RESUMO

Most potassium channels have two main gate locations, hosting an inner gate at the cytosolic entrance and a filter gate in the selectivity filter; the function of these gates is in many channels coupled. To obtain exclusive insights into the molecular mechanisms that determine opening and closing of the filter gate, we use a combination of single-channel recordings and gating analysis in the minimal viral channel KcvNTS. This channel has no inner gate, and its fast closing at negative voltages can therefore be entirely assigned to the filter gate. We find that mutations of S42 in the pore helix severely slow down closing of this filter gate, an effect which is not correlated with hydrogen bond formation by the amino acid at this position. Hence, different from KcsA, which contains the critical E71 in the equivalent position forming a salt bridge, the coupling between selectivity filter and surrounding structures for filter gating must in KcvNTS rely on different modes of interaction. Quantitative analysis of concatemers carrying different numbers of S42T mutations reveals that each subunit contributes the same amount of âˆ¼ 0.4 kcal/mol to the energy barrier for filter closure indicating a concerted action of the subunits. Since the mutations have neither an influence on the unitary current nor on the voltage dependency of the gate, the data stress that the high subunit cooperativity is mediated through conformational changes rather than through changes in the ion occupation in the selectivity filter.


Assuntos
Ativação do Canal Iônico , Canais de Potássio , Mutação , Canais de Potássio/química , Canais de Potássio/genética , Canais de Potássio/metabolismo , Conformação Proteica
2.
Front Physiol ; 12: 737834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777005

RESUMO

Modulating the activity of ion channels by blockers yields information on both the mode of drug action and on the biophysics of ion transport. Here we investigate the interplay between ions in the selectivity filter (SF) of K+ channels and the release kinetics of the blocker tetrapropylammonium in the model channel KcvNTS. A quantitative expression calculates blocker release rate constants directly from voltage-dependent ion occupation probabilities in the SF. The latter are obtained by a kinetic model of single-channel currents recorded in the absence of the blocker. The resulting model contains only two adjustable parameters of ion-blocker interaction and holds for both symmetric and asymmetric ionic conditions. This data-derived model is corroborated by 3D reference interaction site model (3D RISM) calculations on several model systems, which show that the K+ occupation probability is unaffected by the blocker, a direct consequence of the strength of the ion-carbonyl attraction in the SF, independent of the specific protein background. Hence, KcvNTS channel blocker release kinetics can be reduced to a small number of system-specific parameters. The pore-independent asymmetric interplay between K+ and blocker ions potentially allows for generalizing these results to similar potassium channels.

3.
Eur Biophys J ; 50(1): 37-57, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523249

RESUMO

Coarse-grained protein models approximate the first-principle physical potentials. Among those modeling approaches, the relative entropy framework yields promising and physically sound results, in which a mapping from the target protein structure and dynamics to a model is defined and subsequently adjusted by an entropy minimization of the model parameters. Minimization of the relative entropy is equivalent to maximization of the likelihood of reproduction of (configurational ensemble) observations by the model. In this study, we extend the relative entropy minimization procedure beyond parameter fitting by a second optimization level, which identifies the optimal mapping to a (dimension-reduced) topology. We consider anisotropic network models of a diverse set of ion channels and assess our findings by comparison to experimental results.


Assuntos
Entropia , Canais Iônicos/metabolismo , Modelos Biológicos , Porosidade
4.
J Gen Physiol ; 153(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33439243

RESUMO

It has become increasingly apparent that the lipid composition of cell membranes affects the function of transmembrane proteins such as ion channels. Here, we leverage the structural and functional diversity of small viral K+ channels to systematically examine the impact of bilayer composition on the pore module of single K+ channels. In vitro-synthesized channels were reconstituted into phosphatidylcholine bilayers ± cholesterol or anionic phospholipids (aPLs). Single-channel recordings revealed that a saturating concentration of 30% cholesterol had only minor and protein-specific effects on unitary conductance and gating. This indicates that channels have effective strategies for avoiding structural impacts of hydrophobic mismatches between proteins and the surrounding bilayer. In all seven channels tested, aPLs augmented the unitary conductance, suggesting that this is a general effect of negatively charged phospholipids on channel function. For one channel, we determined an effective half-maximal concentration of 15% phosphatidylserine, a value within the physiological range of aPL concentrations. The different sensitivity of two channel proteins to aPLs could be explained by the presence/absence of cationic amino acids at the interface between the lipid headgroups and the transmembrane domains. aPLs also affected gating in some channels, indicating that conductance and gating are uncoupled phenomena and that the impact of aPLs on gating is protein specific. In two channels, the latter can be explained by the altered orientation of the pore-lining transmembrane helix that prevents flipping of a phenylalanine side chain into the ion permeation pathway for long channel closings. Experiments with asymmetrical bilayers showed that this effect is leaflet specific and most effective in the inner leaflet, in which aPLs are normally present in plasma membranes. The data underscore a general positive effect of aPLs on the conductance of K+ channels and a potential interaction of their negative headgroup with cationic amino acids in their vicinity.


Assuntos
Bicamadas Lipídicas , Fosfolipídeos , Canais Iônicos , Fosfatidilserinas
5.
Channels (Austin) ; 13(1): 124-135, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31010373

RESUMO

Some algal viruses have coding sequences for proteins with structural and functional characteristics of pore modules of complex K+ channels. Here we exploit the structural diversity among these channel orthologs to discover new basic principles of structure/function correlates in K+ channels. The analysis of three similar K+ channels with ≤ 86 amino acids (AA) shows that one channel (Kmpv1) generates an ohmic conductance in HEK293 cells while the other two (KmpvSP1, KmpvPL1) exhibit typical features of canonical Kir channels. Like Kir channels, the rectification of the viral channels is a function of the K+ driving force. Reconstitution of KmpvSP1 and KmpvPL1 in planar lipid bilayers showed rapid channel fluctuations only at voltages negative of the K+ reversal voltage. This rectification was maintained in KCl buffer with 1 mM EDTA, which excludes blocking cations as the source of rectification. This means that rectification of the viral channels must be an inherent property of the channel. The structural basis for rectification was investigated by a chimera between rectifying and non-rectifying channels as well as point mutations making the rectifier similar to the ohmic conducting channel. The results of these experiments exclude the pore with pore helix and selectivity filter as playing a role in rectification. The insensitivity of the rectifier to point mutations suggests that tertiary or quaternary structural interactions between the transmembrane domains are responsible for this type of gating.


Assuntos
Vírus de Plantas/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Chlorella/virologia , Células HEK293 , Humanos , Vírus de Plantas/química , Vírus de Plantas/genética , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/genética , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/genética
6.
Anal Chim Acta ; 1061: 13-27, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-30926031

RESUMO

Transport processes through ion-channel proteins, protein pores, or solid-state nanopores are traditionally recorded with commercial patch-clamp amplifiers. The bandwidth of these systems is typically limited to 10 kHz by signal-to-noise-ratio (SNR) considerations associated with these measurement platforms. At high bandwidth, the input-referred current noise in these systems dominates, determined by the input-referred voltage noise of the transimpedance amplifier applied across the capacitance at the input of the amplifier. This capacitance arises from several sources: the parasitic capacitance of the amplifier itself; the capacitance of the lipid bilayer harboring the ion channel protein (or the membrane used to form the solid-state nanopore); and the capacitance from the interconnections between the electronics and the membrane. Here, we review state-of-the-art applications of high-bandwidth conductance recordings of both ion channels and solid-state nanopores. These approaches involve tightly integrating measurement electronics fabricated in complementary metal-oxide semiconductors (CMOS) technology with lipid bilayer or solid-state membranes. SNR improvements associated with this tight integration push the limits of measurement bandwidths, in some cases in excess of 10 MHz. Recent case studies demonstrate the utility of these approaches for DNA sequencing and ion-channel recordings. In the latter case, studies with extended bandwidth have shown the potential for providing new insights into structure-function relations of these ion-channel proteins as the temporal resolutions of functional recordings matches time scales achievable with state-of-the-art molecular dynamics simulations.


Assuntos
Canais Iônicos/química , Simulação de Dinâmica Molecular , Nanoporos , Canais Iônicos/metabolismo
7.
J Gen Physiol ; 150(4): 637-646, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29487088

RESUMO

Recent studies have shown that membrane proteins can be efficiently synthesized in vitro before spontaneously inserting into soluble nanoscale lipid bilayers called nanodiscs (NDs). In this paper, we present experimental details that allow a combination of in vitro translation of ion channels into commercially available NDs followed by their direct reconstitution from these nanobilayers into standard bilayer setups for electrophysiological characterization. We present data showing that two model K+ channels, Kcv and KcsA, as well as a recently discovered dual-topology F- channel, Fluc, can be reliably reconstituted from different types of NDs into bilayers without contamination from the in vitro translation cocktail. The functional properties of Kcv and KcsA were characterized electrophysiologically and exhibited sensitivity to the lipid composition of the target DPhPC bilayer, suggesting that the channel proteins were fully exposed to the target membrane and were no longer surrounded by the lipid/protein scaffold. The single-channel properties of the three tested channels are compatible with studies from recordings of the same proteins in other expression systems. Altogether, the data show that synthesis of ion channels into NDs and their subsequent reconstitution into conventional bilayers provide a fast and reliable method for functional analysis of ion channels.


Assuntos
Proteínas de Bactérias/metabolismo , Bicamadas Lipídicas/metabolismo , Canais de Potássio/metabolismo , Proteínas Virais/metabolismo , Potenciais de Ação , Proteínas de Bactérias/química , Bicamadas Lipídicas/química , Canais de Potássio/química , Proteínas Virais/química
8.
Proc Natl Acad Sci U S A ; 115(8): E1789-E1798, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29432144

RESUMO

Single-channel recordings are widely used to explore functional properties of ion channels. Typically, such recordings are performed at bandwidths of less than 10 kHz because of signal-to-noise considerations, limiting the temporal resolution available for studying fast gating dynamics to greater than 100 µs. Here we present experimental methods that directly integrate suspended lipid bilayers with high-bandwidth, low-noise transimpedance amplifiers based on complementary metal-oxide-semiconductor (CMOS) integrated circuits (IC) technology to achieve bandwidths in excess of 500 kHz and microsecond temporal resolution. We use this CMOS-integrated bilayer system to study the type 1 ryanodine receptor (RyR1), a Ca2+-activated intracellular Ca2+-release channel located on the sarcoplasmic reticulum. We are able to distinguish multiple closed states not evident with lower bandwidth recordings, suggesting the presence of an additional Ca2+ binding site, distinct from the site responsible for activation. An extended beta distribution analysis of our high-bandwidth data can be used to infer closed state flicker events as fast as 35 ns. These events are in the range of single-file ion translocations.


Assuntos
Bicamadas Lipídicas/química , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Semicondutores , Sinalização do Cálcio , Membrana Celular , Técnicas Eletroquímicas , Ativação do Canal Iônico , Metais/química , Óxidos/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Fatores de Tempo
9.
FEBS Lett ; 591(23): 3850-3860, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29106736

RESUMO

Lipid bilayers provide many benefits for ion channel recordings, such as control of membrane composition and transport molecules. However, they suffer from high membrane capacitance limiting the bandwidth and impeding analysis of fast gating. This can be overcome by fitting the deviations of the open-channel noise from the baseline noise by extended beta distributions. We demonstrate this analysis step-by-step by applying it to the example of viral K+  channels (Kcv), from the choice of the gating model through the fitting process, validation of the results, and what kinds of results can be obtained. These voltage sensor-less channels show profoundly voltage-dependent gating with dwell times in the closed state of about 50 µs. Mutations assign it to the selectivity filter.


Assuntos
Ativação do Canal Iônico/fisiologia , Bicamadas Lipídicas/metabolismo , Sequência de Aminoácidos , Fenômenos Eletrofisiológicos , Potenciais da Membrana , Modelos Biológicos , Modelos Moleculares , Técnicas de Patch-Clamp , Canais de Potássio/química , Canais de Potássio/genética , Canais de Potássio/metabolismo , Conformação Proteica , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
10.
J Am Chem Soc ; 139(22): 7494-7503, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28499087

RESUMO

Gating of ion channels is based on structural transitions between open and closed states. To uncover the chemical basis of individual gates, we performed a comparative experimental and computational analysis between two K+ channels, KcvS and KcvNTS. These small viral encoded K+ channel proteins, with a monomer size of only 82 amino acids, resemble the pore module of all complex K+ channels in terms of structure and function. Even though both proteins share about 90% amino acid sequence identity, they exhibit different open probabilities with ca. 90% in KcvNTS and 40% in KcvS. Single channel analysis, mutational studies and molecular dynamics simulations show that the difference in open probability is caused by one long closed state in KcvS. This state is structurally created in the tetrameric channel by a transient, Ser mediated, intrahelical hydrogen bond. The resulting kink in the inner transmembrane domain swings the aromatic rings from downstream Phes in the cavity of the channel, which blocks ion flux. The frequent occurrence of Ser or Thr based helical kinks in membrane proteins suggests that a similar mechanism could also occur in the gating of other ion channels.


Assuntos
Ativação do Canal Iônico , Simulação de Dinâmica Molecular , Canais de Potássio/química , Sequência de Aminoácidos , Ligação de Hidrogênio , Modelos Moleculares , Alinhamento de Sequência
11.
FEBS Lett ; 591(2): 295-303, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27995608

RESUMO

The miniature channel, Kcv, is a structural equivalent of the pore of all K+ channels. Here, we follow up on a previous observation that a largely voltage-insensitive channel can be converted into a slow activating inward rectifier after extending the outer transmembrane domain by one Ala. This gain of rectification can be rationalized by dynamic salt bridges at the cytosolic entrance to the channel; opening is favored by voltage-sensitive formation of salt bridges and counteracted by their disruption. Such latent voltage sensitivity in the pore could be relevant for the understanding of voltage gating in complex Kv channels.


Assuntos
Ativação do Canal Iônico , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Cinética , Modelos Biológicos , Proteínas Mutantes/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Temperatura
12.
Channels (Austin) ; 10(2): 119-38, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26646356

RESUMO

The calculation of flux equations or current-voltage relationships in reaction kinetic models with a high number of states can be very cumbersome. Here, a recipe based on an arrow scheme is presented, which yields a straightforward access to the minimum form of the flux equations and the occupation probability of the involved states in cyclic and linear reaction schemes. This is extremely simple for cyclic schemes without branches. If branches are involved, the effort of setting up the equations is a little bit higher. However, also here a straightforward recipe making use of so-called reserve factors is provided for implementing the branches into the cyclic scheme, thus enabling also a simple treatment of such cases.


Assuntos
Bactérias/metabolismo , Bombas de Íon/metabolismo , Modelos Teóricos , Vírus/metabolismo , Animais , Transporte Biológico Ativo , Humanos , Transporte de Íons , Cinética
13.
Sci Rep ; 5: 13861, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26350345

RESUMO

Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels.


Assuntos
Peróxido de Hidrogênio/metabolismo , Canais de Potássio/metabolismo , Transdução de Sinais/efeitos da radiação , Raios X , Cálcio/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Citosol/metabolismo , Glutationa/metabolismo , Humanos , Oxirredução
14.
Channels (Austin) ; 9(5): 262-80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26368656

RESUMO

A main ingredient for the understanding of structure/function correlates of ion channels is the quantitative description of single-channel gating and conductance. However, a wealth of information provided from fast current fluctuations beyond the temporal resolution of the recording system is often ignored, even though it is close to the time window accessible to molecular dynamics simulations. This kind of current fluctuations provide a special technical challenge, because individual opening/closing or blocking/unblocking events cannot be resolved, and the resulting averaging over undetected events decreases the single-channel current. Here, I briefly summarize the history of fast-current fluctuation analysis and focus on the so-called "beta distributions." This tool exploits characteristics of current fluctuation-induced excess noise on the current amplitude histograms to reconstruct the true single-channel current and kinetic parameters. A guideline for the analysis and recent applications demonstrate that a construction of theoretical beta distributions by Markov Model simulations offers maximum flexibility as compared to analytical solutions.


Assuntos
Potenciais de Ação , Algoritmos , Técnicas de Patch-Clamp/métodos , Canais de Potássio/metabolismo , Animais , Humanos , Ativação do Canal Iônico
15.
Virology ; 466-467: 103-11, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25441713

RESUMO

Phycodnaviruses are dsDNA viruses, which infect algae. Their large genomes encode many gene products, like small K(+) channels, with homologs in prokaryotes and eukaryotes. Screening for K(+) channels revealed their abundance in viruses from fresh-water habitats. Recent sequencing of viruses from marine algae or from salt water in Antarctica revealed sequences with the predicted characteristics of K(+) channels but with some unexpected features. Two genes encode either 78 or 79 amino acid proteins, which are the smallest known K(+) channels. Also of interest is an unusual sequence in the canonical α-helixes in K(+) channels. Structural prediction algorithms indicate that the new channels have the conserved α-helix folds but the algorithms failed to identify the expected transmembrane domains flanking the K(+) channel pores. In spite of these unexpected properties electophysiological studies confirmed that the new proteins are functional K(+) channels.


Assuntos
Chlorella/virologia , Phycodnaviridae/genética , Canais de Potássio/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Fenômenos Eletrofisiológicos , Evolução Molecular , Células HEK293 , Humanos , Phycodnaviridae/fisiologia , Filogenia , Canais de Potássio/metabolismo , Estrutura Secundária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas Virais/metabolismo
16.
PLoS One ; 9(9): e107406, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25211283

RESUMO

Transport activity through the mutant D44A of the M2 proton channel from influenza virus A was measured in excised inside-out macro-patches of Xenopus laevis oocytes at cytosolic pH values of 5.5, 7.5 and 8.2. The current-voltage relationships reveal some peculiarities: 1. "Transinhibition", i.e., instead of an increase of unidirectional outward current with increasing cytosolic H(+) concentration, a decrease of unidirectional inward current was found. 2. Strong inward rectification. 3. Exponential rise of current with negative potentials. In order to interpret these findings in molecular terms, different kinetic models have been tested. The transinhibition basically results from a strong binding of H(+) to a site in the pore, presumably His37. This assumption alone already provides inward rectification and exponential rise of the IV curves. However, it results in poor global fits of the IV curves, i.e., good fits were only obtained for cytosolic pH of 8.2, but not for 7.5. Assuming an additional transport step as e.g. caused by a constriction zone at Val27 resulted in a negligible improvement. In contrast, good global fits for cytosolic pH of 7.5 and 8.2 were immediately obtained with a cyclic model. A "recycling step" implies that the protein undergoes conformational changes (assigned to Trp41 and Val27) during transport which have to be reset before the next proton can be transported. The global fit failed at the low currents at pHcyt = 5.5, as expected from the interference of putative transport of other ions besides H(+). Alternatively, a regulatory effect of acidic cytosolic pH may be assumed which strongly modifies the rate constants of the transport cycle.


Assuntos
Proteínas da Matriz Viral/fisiologia , Animais , Transporte Biológico , Membrana Celular/metabolismo , Sistema Livre de Células , Citoplasma/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Oócitos/fisiologia , Xenopus laevis
17.
Nat Chem Biol ; 10(6): 457-62, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24776929

RESUMO

cAMP mediates autonomic regulation of heart rate by means of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which underlie the pacemaker current If. cAMP binding to the C-terminal cyclic nucleotide binding domain enhances HCN open probability through a conformational change that reaches the pore via the C-linker. Using structural and functional analysis, we identified a binding pocket in the C-linker of HCN4. Cyclic dinucleotides, an emerging class of second messengers in mammals, bind the C-linker pocket (CLP) and antagonize cAMP regulation of the channel. Accordingly, cyclic dinucleotides prevent cAMP regulation of If in sinoatrial node myocytes, reducing heart rate by 30%. Occupancy of the CLP hence constitutes an efficient mechanism to hinder ß-adrenergic stimulation on If. Our results highlight the regulative role of the C-linker and identify a potential drug target in HCN4. Furthermore, these data extend the signaling scope of cyclic dinucleotides in mammals beyond their first reported role in innate immune system.


Assuntos
AMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Fosfatos de Dinucleosídeos/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico/fisiologia , Proteínas Musculares/metabolismo , Canais de Potássio/metabolismo , Animais , Sítios de Ligação , Western Blotting , Cristalografia por Raios X , GMP Cíclico/química , GMP Cíclico/metabolismo , Fosfatos de Dinucleosídeos/química , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Ativação do Canal Iônico/efeitos dos fármacos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteínas Musculares/genética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio/genética , Nó Sinoatrial/citologia , Nó Sinoatrial/efeitos dos fármacos , Nó Sinoatrial/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Transfecção
18.
Biochim Biophys Acta ; 1838(4): 1096-103, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23791706

RESUMO

The viral channel KcvNTS belongs to the smallest K(+) channels known so far. A monomer of a functional homotetramer contains only 82 amino acids. As a consequence of the small size the protein is almost fully submerged into the membrane. This suggests that the channel is presumably sensitive to its lipid environment. Here we perform a comparative analysis for the function of the channel protein embedded in three different membrane environments. 1. Single-channel currents of KcvNTS were recorded with the patch clamp method on the plasma membrane of HEK293 cells. 2. They were also measured after reconstitution of recombinant channel protein into classical planar lipid bilayers and 3. into horizontal bilayers derived from giant unilamellar vesicles (GUVs). The recombinant channel protein was either expressed and purified from Pichia pastoris or from a cell-free expression system; for the latter a new approach with nanolipoprotein particles was used. The data show that single-channel activity can be recorded under all experimental conditions. The main functional features of the channel like a large single-channel conductance (80pS), high open-probability (>50%) and the approximate duration of open and closed dwell times are maintained in all experimental systems. An apparent difference between the approaches was only observed with respect to the unitary conductance, which was ca. 35% lower in HEK293 cells than in the other systems. The reason for this might be explained by the fact that the channel is tagged by GFP when expressed in HEK293 cells. Collectively the data demonstrate that the small viral channel exhibits a robust function in different experimental systems. This justifies an extrapolation of functional data from these systems to the potential performance of the channel in the virus/host interaction. This article is part of a Special Issue entitled: Viral Membrane Proteins-Channels for Cellular Networking.


Assuntos
Canais de Potássio/química , Proteínas da Matriz Viral/química , Sequência de Aminoácidos , Células HEK293 , Humanos , Bicamadas Lipídicas/química , Modelos Biológicos , Dados de Sequência Molecular , Canais de Potássio/fisiologia , Proteínas da Matriz Viral/fisiologia
19.
Biochemistry ; 52(18): 3130-7, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23578303

RESUMO

The current of the minimal viral K(+) channel Kcv(PCBV-1) heterologously expressed in Xenopus oocytes is strongly inhibited by reactive oxygen species (ROS) like H(2)O(2). Possible targets for the ROS effect are two cysteines (C53 and C79) and four methionines (M1, M15, M23, and M26). The C53A/C79A and M23L/M26L double mutations maintained the same ROS sensitivity as the wild type. However, M15L as a single mutant or in combination with C53A/C79A and/or M23L/M26L caused a complete loss of sensitivity to H(2)O(2). These results indicate a prominent role of M15 at the cytosolic end of the outer transmembrane helix for gating of Kcv(PCBV-1). Furthermore, even though the channel lacks a canonical voltage sensor, it exhibits a weak voltage sensitivity, resulting in a slight activation in the millisecond range after a voltage step to negative potentials. The M15L mutation inverts this kinetics into an inactivation, underlining the critical role of this residue for gating. The negative slope of the I-V curves of M15L is the same as in the wild type, indicating that the selectivity filter is not involved.


Assuntos
Canais de Potássio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Peróxido de Hidrogênio/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Canais de Potássio/química , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/química
20.
J Gen Physiol ; 141(4): 499-505, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23530139

RESUMO

Single-channel current-voltage (IV) curves of human large-conductance, voltage- and Ca(2+)-activated K(+) (BK) channels are quite linear in 150 mM KCl. In the presence of Ca(2+) and/or Mg(2+), they show a negative slope conductance at high positive potentials. This is generally explained by a Ca(2+)/Mg(2+) block as by Geng et al. (2013. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201210955) in this issue. Here, we basically support this finding but add a refinement: the analysis of the open-channel noise by means of ß distributions reveals what would be found if measurements were done with an amplifier of sufficient temporal resolution (10 MHz), namely that the block by 2.5 mM Ca(2+) and 2.5 mM Mg(2+) per se would only cause a saturating curve up to +160 mV. Further bending down requires the involvement of a second process related to flickering in the microsecond range. This flickering is hardly affected by the presence or absence of Ca(2+)/Mg(2+). In contrast to the experiments reported here, previous experiments in BK channels (Schroeder and Hansen. 2007. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.200709802) showed saturating IV curves already in the absence of Ca(2+)/Mg(2+). The reason for this discrepancy could not be identified so far. However, the flickering component was very similar in the old and new experiments, regardless of the occurrence of noncanonical IV curves.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Cálcio/farmacologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/antagonistas & inibidores , Células HEK293 , Humanos , Ativação do Canal Iônico , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Magnésio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...