Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 128: 283-290, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31059968

RESUMO

Livestock manures are potential sources of antibiotics in the environment. Sulfamethazine (SMZ), frequently used in veterinary medicine, can enter the environment by using manure as soil fertilizer due to its incomplete absorption in the animal gut and its unmetabolized excretion. The objective of this study was to evaluate the mineralization of 14C-labelled SMZ in manure under a new redox scenario provided by microbial electrochemical reactors, termed microbial electroremediating cells (MERC). These devices aim to overcome the electron acceptor limitation in bacterial oxidative metabolism by means of using electrodes to enhance the biodegradation of pollutants in the environment. Our results revealed that the total degradation of 14C-SMZ reached 43.5% in short term batch laboratory scale experiments under reducing conditions (-400 mV vs. Ag/AgCl). Actually, SMZ mineralization was enhanced up to 10-fold in the early stages (after 2 weeks) in comparison with an electrode-free natural attenuation assay. Moreover, mineralization showed a dependence on electrode potential, with negligible results for conditions set to +400 mV vs Ag/AgCl. The impact of merging electrodes and microorganisms for manure bioremediation suggests a promising future for this emerging technology to treat polluted livestock wastes and prevent soil and groundwater pollution.


Assuntos
Anti-Infecciosos/metabolismo , Eletrodos , Esterco/microbiologia , Minerais/metabolismo , Sulfametazina/metabolismo , Animais , Bactérias/metabolismo , Biodegradação Ambiental , Fontes de Energia Bioelétrica , Poluentes do Solo/metabolismo , Suínos , Poluentes Químicos da Água/metabolismo
2.
Sci Total Environ ; 676: 420-428, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31048172

RESUMO

DDT and its main metabolites (DDTs) are still the residual contaminants in soil. Sequential anaerobic-aerobic cycling has long been approved for enhancing the degradation of DDTs in soil. However, there is a lack of study investigating whether anaerobic-aerobic cycling would enhance the mineralization of DDT, and what a kind of anaerobic-aerobic management regimes would be optimal. To fill these gaps, the fate of 14C-DDT under different flooding-drying cycles was examined in a paddy soil by monitoring its mineralization and bioavailability. The results show the total mineralization of 14C-DDT in 314 days accounted for 1.01%, 1.30%, and 1.41%, individually for the treatments subjected to one, two, and three flooding-drying cycles. By comparison, the treatment subjected to the permanently aerobic phase had only 0.12% cumulative mineralization. Shorter intervals and multiple flooding-drying cycles enhanced the mineralization of 14C-DDT, however, reduced its bioavailability. Therefore, the enhanced mineralization was explained from an abiotic pathway as predicted by the one-electron reduction potential (E1), the Fukui function for nucleophilic attack (f+) and the steps for anaerobic decarboxylation. From a practical view, it is important to investigate how the anaerobic-aerobic interval and frequency would affect the degradation and mineralization of DDT, which is very essential in developing remediation strategies.

3.
Environ Sci Pollut Res Int ; 26(9): 8779-8788, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30712212

RESUMO

DDT transformation to DDD in soil is the most commonly reported pathway under anaerobic conditions. A few instances of DDT conversion to products other than DDD/DDE have been reported under aerobic conditions and hardly any under anaerobic conditions. In particular, few reports exist on the anaerobic degradation of DDT in African tropical soils, despite DDT contamination arising from obsolete pesticide stockpiles in the continent as well as new contamination from DDT use for mosquito and tsetse fly control. Moreover, the development of possible remediation strategies for contaminated sites demands adequate understanding of different soil processes and their effect on DDT persistence, hence necessitating the study. The aim of this work was to study the effect of simulated anaerobic conditions and slow-release carbon sources (compost) on the dissipation of DDT in two tropical clay soils (paddy soil and field soil) amenable to periodic flooding. The results showed faster DDT dissipation in the field soil but higher metabolite formation in the paddy soil. To explain this paradox, the levels of dissolved organic carbon and carbon mineralization (CH4 and CO2) were correlated with p,p-DDT and p,p-DDD concentrations. It was concluded that DDT underwent reductive degradation (DDD pathway) in the paddy soil and both reductive (DDD pathway) and oxidative degradation (non-DDD pathway) in the field soil.


Assuntos
DDT/química , Diclorodifenildicloroetano/química , Praguicidas/química , Poluentes do Solo/química , Solo/química , Carbono , Argila , Compostagem , DDT/análise , Recuperação e Remediação Ambiental , Clima Tropical
4.
Sci Total Environ ; 627: 544-552, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29426177

RESUMO

Glyphosate and its main metabolite aminomethylphosphonic acid (AMPA) have frequently been detected in surface water and groundwaters. Since adequate glyphosate mineralization in soil may reduce its losses to environment, improved understanding of site specific factors underlying pesticide mineralization in soils is needed. The aim of this study was to investigate the relationship between soil properties and glyphosate mineralization. To establish a sound basis for resilient correlations, the study was conducted with a large number of 21 agricultural soils, differing in a variety of soil parameters, such as soil texture, soil organic matter content, pH, exchangeable ions etc. The mineralization experiments were carried out with 14C labelled glyphosate at a soil water tension of -15 kPa and at a soil density of 1.3 g cm-3 at 20 ±â€¯1 °C for an incubation period of 32 days. The results showed that the mineralization of glyphosate in different agricultural soils varied to a great extent, from 7 to 70% of the amount initially applied. Glyphosate mineralization started immediately after application, the highest mineralization rates were observed within the first 4 days in most of the 21 soils. Multiple regression analysis revealed exchangeable acidity (H+ and Al3+), exchangeable Ca2+ ions and ammonium lactate extractable K to be the key soil parameters governing glyphosate mineralization in the examined soils. A highly significant negative correlation between mineralized glyphosate and NaOH-extractable residues (NaOH-ER) in soils strongly suggests that NaOH-ER could be used as a simple and reliable parameter for evaluating the glyphosate mineralization capacity. The NaOH-ER were composed of glyphosate, unknown 14C-residues, and AMPA (12%-65%, 3%-34%, 0%-11% of applied 14C, respectively). Our results highlighted the influential role of soil exchangeable acidity, which should therefore be considered in pesticide risk assessments and management to limit efficiently the environmental transfers of glyphosate.

5.
Microb Biotechnol ; 11(1): 50-62, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28643961

RESUMO

The absence of suitable terminal electron acceptors (TEA) in soil might limit the oxidative metabolism of environmental microbial populations. Bioelectroventing is a bioelectrochemical strategy that aims to enhance the biodegradation of a pollutant in the environment by overcoming the electron acceptor limitation and maximizing metabolic oxidation. Microbial electroremediating cells (MERCs) are devices that can perform such a bioelectroventing. We also report an overall profile of the 14 C-ATR metabolites and 14 C mass balance in response to the different treatments. The objective of this work was to use MERC principles, under different configurations, to stimulate soil bacteria to achieve the complete biodegradation of the herbicide 14 C-atrazine (ATR) to 14 CO2 in soils. Our study concludes that using electrodes at a positive potential [+600 mV (versus Ag/AgCl)] ATR mineralization was enhanced by 20-fold when compared to natural attenuation in electrode-free controls. Furthermore, ecotoxicological analysis of the soil after the bioelectroventing treatment revealed an effective clean-up in < 20 days. The impact of electrodes on soil bioremediation suggests a promising future for this emerging environmental technology.


Assuntos
Atrazina/metabolismo , Biodegradação Ambiental , Técnicas Eletroquímicas/métodos , Herbicidas/metabolismo , Técnicas Microbiológicas/métodos , Poluentes do Solo/metabolismo , Solo/química , Dióxido de Carbono/metabolismo , Oxirredução
6.
Ecotoxicol Environ Saf ; 149: 182-189, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29175344

RESUMO

During pesticides degradation, biogenic non-extractable residues ("apparent NER") may not share the same environmental fate and risks with the "real NER" that are bound to soil matrix. It is not clear how microbial community (MC) inoculation for pesticides degradation would influence the NER composition. To investigate degradation efficiency of pesticides Isoproturon (IPU) and NER composition following MC inoculation, clay particles harboring MC that contains the IPU degrading strain, Sphingomonas sp., were inoculated into soil receiving 14C-labeled IPU addition. Mineralization of IPU was greatly enhanced with MC inoculation that averagely 55.9% of the applied 14C-IPU was consumed up into 14CO2 during 46 days soil incubation. Isoproturon degradation was more thorough with MC than that in the control: much less amount of metabolic products (4.6% of applied IPU) and NER (35.4%) formed in MC treatment, while the percentages were respectively 30.3% for metabolites and 49.8% for NER in the control. Composition of NER shifted with MC inoculation, that relatively larger amount of IPU was incorporated into the biogenic "apparent NER" in comparison with "real NER". Besides its well-recognized role on enhancing mineralization, MC inoculation with clay particles benefits soil pesticides remediation in term of reducing "real NER" formation, which has been previously underestimated.


Assuntos
Resíduos de Praguicidas/análise , Compostos de Fenilureia/análise , Poluentes do Solo/análise , Sphingomonas/crescimento & desenvolvimento , Silicatos de Alumínio/química , Biodegradação Ambiental , Argila , Solo/química , Microbiologia do Solo
7.
Sci Total Environ ; 605-606: 1031-1038, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28697551

RESUMO

In Gram-negative bacteria, quorum sensing systems are based on the N-acyl-homoserine lactone (AHL) molecule. The objective of this study was to investigate the role of quorum sensing systems during biofilm formation by a microbial community while degrading the pollutant. Our model system included 1,2,4-trichlorobenzene (1,2,4-TCB) and its mineralizing Gram-negative bacterial community to investigate the relationships between AHL dynamics, cell growth and pollutant degradation. Biomineralization of 1,2,4-TCB was monitored for both the planktonic bacterial community with and without sterile clay particles in liquid cultures. The bacterial growth and production of AHLs were quantified by fluorescent in situ hybridization and immunoassay analysis, respectively. A rapid production of AHLs which occurred coincided with the biofilm formation and the increase of mineralization rate of 1,2,4-TCB in liquid cultures. There is a positive correlation between the cell density of Bodertella on the clay particles and mineralization rate of 1,2,4-TCB. 3-oxo-C12:1-HSL appears to be the dominant AHL with the highest intensity and rapidly degraded by the bacterial community via two main consecutive reactions (lactone hydrolysis and decarboxylic reaction). These findings suggest that the integrated AHLs and their degraded products play a crucial role in biofilm formation and biomineralization of 1,2,4-TCB in culture.


Assuntos
Acil-Butirolactonas/química , Silicatos de Alumínio , Biofilmes , Clorobenzenos/metabolismo , Bactérias Gram-Negativas/metabolismo , Argila , Hibridização in Situ Fluorescente , Percepção de Quorum
8.
Chemosphere ; 168: 1169-1176, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27817898

RESUMO

Isoproturon (IPU) degradation in an agricultural soil inoculated with an isolated IPU-degrader strain (Sphingomonas sp. strain AK1, IS) or a microbial consortium (MC) harboring this strain, with or without carrier material, were investigated in soil microcosm experiments during 46 days. Effect of the carrier material and inoculation size on IPU-degradation efficacy of the inoculants were studied. Mineralization, extractable residues and non-extractable residues of 14C-labeled IPU were analyzed. The low IPU mineralization in untreated soil (7.0%) was enhanced to different extents by inoculation of IS (17.4%-46.0%) or MC (58.9%-67.5%). Concentrations of IPU residues in soils amended with MC (0.002-0.095 µg g dry soil-1) were significantly lower than in soils amended with IS (0.02-0.67 µg g dry soil-1) and approximately 10 times lower than in the uninoculated soil (0.06-0.80 µg g dry soil-1). Less extractable residues and non-extractable residues were detected in soil with higher IPU mineralization. Inoculation size (as indicated by the volume of liquid cultures or by the number of carrier particles) determined the IPU-removal efficacy of IS in soil, but this effect was less pronounced for MC. The low sorption of IPU to soil and the decreasing IPU-mineralizing rates suggested incapability of IS to establish the IPU-mineralizing function in the soil. The thorough removal of IPU and persistent IPU-mineralizing activity of soil inoculated with MC indicated a high persistence of IPU-metabolic trait. Our results showed that microbial consortia might be more efficient than single degrader strains to enhance clean-up of organic chemicals in soil.


Assuntos
Biodegradação Ambiental , Herbicidas/química , Consórcios Microbianos , Compostos de Fenilureia/química , Poluentes do Solo/química , Solo/química , Sphingomonas/metabolismo , Agricultura , Poluição Ambiental , Minerais/metabolismo , Microbiologia do Solo , Poluentes do Solo/análise
9.
Microb Biotechnol ; 9(3): 369-80, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26880137

RESUMO

The absence of suitable terminal electron acceptors (TEA) in soil might limit the oxidative metabolism of environmental microbial populations. Microbial electroremediating cells (MERCs) consist in a variety of bioelectrochemical devices that aim to overcome electron acceptor limitation and maximize metabolic oxidation with the purpose of enhancing the biodegradation of a pollutant in the environment. The objective of this work was to use MERCs principles for stimulating soil bacteria to achieve the complete biodegradation of the herbicide (14) C-isoproturon (IPU) to (14) CO(2) in soils. Our study concludes that using electrodes at a positive potential [+600 mV (versus Ag/AgCl)] enhanced the mineralization by 20-fold respect the electrode-free control. We also report an overall profile of the (14) C-IPU metabolites and a (14) C mass balance in response to the different treatments. The remarkable impact of electrodes on the microbial activity of natural communities suggests a promising future for this emerging environmental technology that we propose to name bioelectroventing.


Assuntos
Eletrodos , Herbicidas/metabolismo , Compostos de Fenilureia/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Biotransformação , Dióxido de Carbono/metabolismo , Oxirredução
10.
Chemosphere ; 144: 312-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26366929

RESUMO

A worldwide used pesticide - isoproturon (IPU) - was selected to test whether short-term experiments can be used to predict long-term mineralization of IPU in soil. IPU-mineralization was measured for 39 and 265 days in four different agricultural soils with a low mineralization dynamic. Additionally, in one soil IPU dissipation, formation and dissipation of metabolites, formation of non-extractable residues (NER) and (14)C-microbial biomass from (14)C-IPU were monitored for 39 and 265 days. The data from short-term and long-term experiments were used for model fitting. The long-term dynamics of IPU mineralization were considerably overestimated by the short-term experiments in two soils with neutral pH, while in two other soils with low pH and lower mineralization, the long-term mineralization of IPU could be sufficiently predicted. Additional investigations in one of the soils with neutral pH showed that dissipation of IPU and metabolites could be correctly predicted by the short-term experiment. However, the formation of NER and (14)C-microbial biomass were remarkably overestimated by the short-term experiment. Further, it could be shown that the released NER and (14)C-microbial biomass were the main contributors of (14)CO2 formation at later incubation stages. Taken together, our results indicate that in soils with neutral pH short-term experiments were inadequate to predict the long-term mineralization of IPU.


Assuntos
Monitoramento Ambiental/métodos , Herbicidas/análise , Compostos de Fenilureia/análise , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Agricultura , Alemanha , Concentração de Íons de Hidrogênio , Modelos Teóricos , Valor Preditivo dos Testes , Fatores de Tempo
11.
Rapid Commun Mass Spectrom ; 29(15): 1403-10, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26147480

RESUMO

RATIONALE: Aerosols play an important role in depositing metals into forest ecosystems. Better understanding of forest aerosols with regard to their metal content and their possible sources is of great significance for air quality and forest health. METHODS: Particulate matter with an aerodynamic diameter less than 2.5 µm (PM(2.5)) in aerosols was collected every month for 20 months using moderate-volume samplers in the Dinghushan (DHS) nature reserve in southern China. The concentrations of metals (Al, Cd, Mn, Ni, Pb, and Zn) as well as the Pb isotopic ratios in the PM(2.5) samples were measured by inductively coupled plasma mass spectrometry (ICP-MS). RESULTS: Moderate pollution with aerosol PM(2.5) was detected at the DHS nature reserve with the air mass from mainland China being the predominant PM(2.5) source. The high enrichment factors (EFs) for the heavy metals Pb, Cd, and Zn, as well as the PM(2.5) mass concentrations, coupled with backward trajectory analysis, indicated the anthropogenic origins of the PM(2.5) and of the heavy metals in the PM(2.5). The Pb isotopic ratios revealed the contributions from various Pb sources, which varied between seasons. CONCLUSIONS: Industrial emissions and automobile exhaust from the Pearl River Delta (PRD) primarily contributed to the anthropogenic Pb in PM(2.5), although there was occasionally a contribution from coal combustion during the wet season. Pb isotopic ratios analyses are helpful for air quality assessment and Pb source tracing.

12.
Chemosphere ; 134: 528-35, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25543158

RESUMO

Carbon (C)-rich, solid products from pyrolysis (pyrochars) and hydrothermal carbonization (HTC, hydrochars) are expected to reduce the bioavailability and bioaccessibility of pesticides as side effect of soil addition. To compare effects of different feedstocks (digestate, miscanthus, woodchips) and production processes (pyrolysis at 750°C, HTC at 200°C and 250°C), (14)C-labeled isoproturon (IPU) was applied at 0.75 kg ha(-)(1) to loamy sand amended either with 0.5% or 5% pyrochars or hydrochars, which was then incubated for 50d. Mineralization of IPU was measured as (14)C-CO2 released from soil-char composites. Pore-water and methanol extractable (14)C-IPU was quantified as well as non-extractable (14)C-residues (NER). Furthermore, C mineralization of pyrochars, hydrochars and feedstocks was studied to assess the relationship between IPU bioaccessibility and char decomposability. In pure soil, 8.1% of applied IPU was mineralized after 50d. This was reduced more strongly in pyrochar treatments (81 ± 6% reduction) than in hydrochar treatments (56 ± 25% reduction). Different feedstocks had no significantly different effect when 5% char was added, but their effect was significant and dependent on the production process in 0.5% amendments. Pesticide binding can occur by surface sorption as well as by diffusion and subsequent occlusion in micropores. The latter can be expected to result in high amounts of NER, as it was observed in the pyrochar treatments. Hydrochars were less stable than pyrochars and contained lower amounts of NER. Thus, in hydrochar amended soils, better accessibility of IPU to microbial degradation may be a result of full char decomposition within decades ensuring controlled pesticide degradation.


Assuntos
Carvão Vegetal/análise , Herbicidas/química , Compostos de Fenilureia/química , Poluentes do Solo/química , Solo/química , Agricultura , Carvão Vegetal/química
13.
Chemosphere ; 119: 155-162, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24974225

RESUMO

Carbonaceous material from pyrolysis (pyrochars) and hydrothermal carbonization (hydrochars) are applied to soil to improve soil fertility and carbon sequestration. As a positive side effect, the mobility of pesticides and the risk of groundwater contamination can be minimized. However, the impact of various raw materials on the sorption capacity of different pyrochars and hydrochars is poorly understood. Thus, sorption experiments were performed with (14)C-labeled isoproturon (IPU, 0.75 kg ha(-1)) in a loamy sand soil amended with either pyrochar or hydrochar (0.5% and 5% dry weight, respectively). Carbonaceous materials were produced from three different raw materials: corn digestate, miscanthus, woodchips of willow and poplar. After 72 h of incubation, a sequential extraction procedure was conducted to quantify in situ IPU bioavailability, total amount of extractable IPU, and non-extractable pesticide residues (NER). Added char amount, carbonization type, and raw materials had statistically significant effects on the sorption of IPU. The amount of in situ available IPU was reduced by a factor of 10-2283 in treatments with pyrochar and by a factor of 3-13 in hydrochar treatments. The surface area of the charred material was the most predictive variable of IPU sorption to char amended soil. Some physical and chemical char properties tend to correlate with pore water-, methanol- or non-extractable IPU amounts. Due to a low micro-porosity and ash content, high water extractable carbon contents and O-functional groups of hydrochars, the proportion of NER in hydrochar amended soils was considerably lower than in soil amended with pyrochars.


Assuntos
Carvão Vegetal/química , Herbicidas/química , Poluentes do Solo/química , Solo/química , Adsorção , Análise de Variância , Disponibilidade Biológica , Sequestro de Carbono , Modelos Químicos , Resíduos de Praguicidas/análise , Compostos de Fenilureia/farmacocinética , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Environ Sci Pollut Res Int ; 22(2): 1344-56, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25142342

RESUMO

Halogenated carbazoles have recently been detected in soil and water samples, but their environmental effects and fate are unknown. Eighty-four soil samples obtained from a site with no recorded history of pollution were used to assess the persistence and dioxin-like toxicity of carbazole and chlorocarbazoles in soil under controlled conditions for 15 months. Soil samples were divided into two temperature conditions, 15 and 20 °C, both under fluctuating soil moisture conditions comprising 19 and 44 drying-rewetting cycles, respectively. This was characterized by natural water loss by evaporation and rewetting to -15 kPa. Accelerated solvent extraction (ASE) and cleanup were performed after incubation. Identification and quantification were done using high-resolution gas chromatogram/mass spectrometer (HRGC/MS), while dioxin-like toxicity was determined by ethoxyresorufin-O-deethylase (EROD) induction in H4IIA rat hepatoma cells assay and multidimensional quantitative structure-activity relationships (mQSAR) modelling. Carbazole, 3-chlorocarbazole and 3,6-dichlorocarbazole were detected including trichlorocarbazole not previously reported in soils. Carbazole and 3-chlorocarbazole showed significant dissipation at 15 °C but not at 20 °C incubating conditions indicating that low temperature could be suitable for dissipation of carbazole and chlorocarbazoles. 3,6-Dichlorocarbazole was resistant at both conditions. Trichlorocarbazole however exhibited a tendency to increase in concentration with time. 3-Chlorocarbazole, 3,6-dibromocarbazole and selected soil extracts exhibited EROD activity. Dioxin-like toxicity did not decrease significantly with time, whereas the sum chlorocarbazole toxic equivalence concentrations (∑TEQ) did not contribute significantly to the soil assay dioxin-like toxicity equivalent concentrations (TCDD-EQ). Carbazole and chlorocarbazoles are persistent with the latter also toxic in natural conditions.


Assuntos
Carbazóis/toxicidade , Poluentes do Solo/toxicidade , Animais , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Carbazóis/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dioxinas/análise , Dioxinas/toxicidade , Dodecenoil-CoA Isomerase , Cromatografia Gasosa-Espectrometria de Massas , Ratos , Solo/química , Microbiologia do Solo , Poluentes do Solo/química
16.
Sci Total Environ ; 497-498: 29-37, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25112822

RESUMO

The quality, stability and availability of organic carbon (OC) in soil organic matter (SOM) can vary widely between differently managed ecosystems. Several approaches have been developed for isolating SOM fractions to examine their ecological roles, but links between the bioavailability of the OC of size-density fractions and soil microbial communities have not been previously explored. Thus, in the presented laboratory study we investigated the potential bioavailability of OC and the structure of associated microbial communities in different particle-size and density fractions of SOM. For this we used samples from four grassland ecosystems with contrasting management intensity regimes and two soil types: a Haplic Cambisol and a typical Chernozem. A combined size-density fractionation protocol was applied to separate clay-associated SOM fractions (CF1, <1 µm; CF2, 1-2 µm) from light SOM fractions (LF1, <1.8 g cm(-3); LF2, 1.8-2.0 g cm(-3)). These fractions were used as carbon sources in a respiration experiment to determine their potential bioavailability. Measured CO2-release was used as an index of substrate accessibility and linked to the soil microbial community structure, as determined by phospholipid fatty acids (PLFA) analysis. Several key factors controlling decomposition processes, and thus the potential bioavailability of OC, were identified: management intensity and the plant community composition of the grasslands (both of which affect the chemical composition and turnover of OC) and specific properties of individual SOM fractions. The PLFA patterns highlighted differences in the composition of microbial communities associated with the examined grasslands, and SOM fractions, providing the first broad insights into their active microbial communities. From observed interactions between abiotic and biotic factors affecting the decomposition of SOM fractions we demonstrate that increasing management intensity could enhance the potential bioavailability of OC, not only in the active and intermediate SOM pools, but also in the passive pool.


Assuntos
Carbono/análise , Ecossistema , Pradaria , Solo/química , Tamanho da Partícula , Microbiologia do Solo
17.
Chemosphere ; 92(11): 1403-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23601124

RESUMO

The objective of the present study was to get more insight into the mechanisms that govern the high mineralization potential of a microbial community attached on a carrier material, as we found in an earlier study (Wang et al., 2010). A 1,2,4-Trichlorobenzene (1,2,4-TCB) degrading microbial community - attached (MCCP) and non-attached (MCLM) on clay particles - was inoculated into a simplified mineral medium system. Signaling molecules (AHLs), cell growth and 1,2,4-TCB mineralization were measured at different sampling points. The production of AHLs in the MCCP system increased continuously with increasing key degrader (Bordetella sp.) cell growth and a positive correlation was observed between the production of AHLs and 1,2,4-TCB mineralization. In the MCLM system, however, 1,2,4-TCB mineralization was lower than in the MCCP system; the AHLs production per Bordetella cell was higher than in MCCP and there was no correlation between AHLs and mineralization. Moreover, in the MCCP system less different AHLs were produced than in the MCLM system. These results indicate that a microbial community attached on a carrier material has an advantage over a non-attached community: it produces signaling molecules with much less energy and effort to achieve a well-directed cell-to-cell communication resulting in a high and effective mineralization.


Assuntos
Clorobenzenos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Solo/química , Acil-Butirolactonas/metabolismo , Bactérias/citologia , Bactérias/metabolismo , Biodegradação Ambiental , Clorobenzenos/isolamento & purificação , Minerais/metabolismo , Poluentes do Solo/isolamento & purificação
18.
J Environ Sci Health B ; 48(1): 40-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23030439

RESUMO

This study elucidates the effects of carbon amendment on metabolic degradation of atrazine (6-chloro-N(2)-ethyl-N(4)-isopropyl-1,3,5-triazine-2,4-diamine) and total microbial biomass in soil. Degradation of (14)C-ring-labelled atrazine was monitored in laboratory incubations of soils supplemented with 0, 10, 100 and 1000 µg g(-1) sucrose concentrations. An experiment to determine the effect of carbon amendment on total microbial biomass and soil respiration was carried out with different concentrations of sucrose and non-labelled atrazine. The soils were incubated at a constant temperature and constant soil moisture at water potential of -15 kPa and a soil density of 1.3 g cm(-3). Mineralization of (14)C-ring-labelled atrazine was monitored continuously over a period of 59 d in the first experiment. The CO(2) production was monitored for 62 d in the second experiment and microbial biomass determined at the end of the incubation period. The addition of 1000 µg g(-1) sucrose reduced atrazine mineralization to 43.5% compared to 51.7% of the applied amount for the treatment without sucrose. The addition of 1000 µg g(-1) sucrose modified the transformation products to 1.08 µg g(-1) deisopropylatrazine (DIA), 0.32 µg g(-1) desethylatrazine (DEA) and 0.18 µg g(-1) deisopropyl-2-hydroxyatrazine (OH-DIA). Treatment without sucrose resulted in formation of 0.64 µg g(-1) hydroxyatrazine (HA), 0.28 µg g(-1) DIA and 0.20 µg g(-1) OH-DIA. Atrazine dealkylation was enhanced in treatments with 100 and 1000 µg g(-1) of sucrose added. HA metabolite was formed in the control (no sucrose) and in the presence of 10 µg g(-1) of sucrose, whereas DEA was only detected in treatment with 1000 µg g(-1) sucrose. Results indicate that total microbial biomass increased significantly (P < 0.001) with the addition of 1000 µg g(-1) sucrose.


Assuntos
Atrazina/química , Bactérias/efeitos dos fármacos , Recuperação e Remediação Ambiental/métodos , Praguicidas/química , Microbiologia do Solo , Poluentes do Solo/química , Solo/química , Sacarose/análise , Atrazina/farmacologia , Bactérias/crescimento & desenvolvimento , Biomassa , Cinética , Praguicidas/farmacologia , Poluentes do Solo/farmacologia
19.
Environ Pollut ; 173: 168-75, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23202647

RESUMO

The aim of the study was to induce and enhance the degradation of hexachlorobenzene (HCB), a highly-chlorinated persistent organic pollutant, in two ecologically different tropical soils: a paddy soil (PS) and a non-paddy soil (FS). The degradation of HCB was enhanced using two anaerobic-aerobic cycles in model laboratory experiments. There was greater degradation of HCB in the PS (half-life of 224 days) relative to the FS (half-life of 286 days). It was further shown that soils amended with compost had higher metabolite concentrations relative to the non-amended soils. In the first cycle, there was little degradation of HCB in both soils. However, in the second cycle, there was enhanced mineralization in the PS under aerobic conditions, with the compost-treated samples showing higher mineralization. There was also extensive volatilization in both soils. The metabolite pattern revealed that the increased mineralization and volatilization was due to the formation of lower chlorinated benzenes.


Assuntos
Silicatos de Alumínio/química , Recuperação e Remediação Ambiental/métodos , Hexaclorobenzeno/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Solo/química , Aerobiose , Anaerobiose , Biodegradação Ambiental , Radioisótopos de Carbono , Argila , Meia-Vida , Hexaclorobenzeno/análise , Poluentes do Solo/análise , Clima Tropical
20.
Chemosphere ; 84(4): 369-75, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21531437

RESUMO

This study elucidates the effect of fluctuating soil moisture on the co-metabolic degradation of atrazine (6-chloro-N(2)-ethyl-N(4)-isopropyl-1,3,5-triazine-2,4-diamine) in soil. Degradation experiments with (14)C-ring-labelled atrazine were carried out at (i) constant (CH) and (ii) fluctuating soil humidity (FH). Temperature was kept constant in all experiments. Experiments under constant soil moisture conditions were conducted at a water potential of -15 kPa and the sets which were run under fluctuating soil moisture conditions were subjected to eight drying-rewetting cycles where they were dried to a water potential of around -200 kPa and rewetted to -15 kPa. Mineralization was monitored continuously over a period of 56d. Every two weeks the pesticide residues in soil pore water (PW), the methanol-extractable pesticide residues, the non-extractable residues (NER), and the total cell counts were determined. In the soil with FH conditions, mineralization of atrazine as well as the formation of the intermediate product deisopropyl-2-hydroxyatrazine was increased compared to the soil with constant humidity. In general, we found a significant correlation between the formation of this metabolite and atrazine mineralization. The cell counts were not different in the two experimental variants. These results indicate that the microbial activity was not a limiting factor but the mineralization of atrazine was essentially controlled by the bioavailability of the parent compound and the degradation product deisopropyl-2-hydroxyatrazine.


Assuntos
Atrazina/metabolismo , Herbicidas/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Atrazina/análise , Bactérias/metabolismo , Biodegradação Ambiental , Herbicidas/análise , Umidade , Microbiologia do Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA