Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 75(10): 2776-2777, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764321
2.
Bioessays ; 46(6): e2400013, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593286

RESUMO

In addition to monocentric eukaryotes, which have a single localized centromere on each chromosome, there are holocentric species, with extended repeat-based or repeat-less centromeres distributed over the entire chromosome length. At least two types of repeat-based holocentromeres exist, one composed of many small repeat-based centromere units (small unit-type), and another one characterized by a few large centromere units (large unit-type). We hypothesize that the transposable element-mediated dispersal of hundreds of short satellite arrays formed the small centromere unit-type holocentromere in Rhynchospora pubera. The large centromere unit-type of the plant Chionographis japonica is likely a product of simultaneous DNA double-strand breaks (DSBs), which initiated the de novo formation of repeat-based holocentromeres via insertion of satellite DNA, derived from extra-chromosomal circular DNAs (eccDNAs). The number of initial DSBs along the chromosomes must be higher than the number of centromere units since only a portion of the breaks will have incorporated eccDNA at an appropriate position to serve as future centromere unit sites. Subsequently, preferential incorporation of the centromeric histone H3 variant at these positions is assumed. The identification of repeat-based holocentromeres across lineages will unveil the centromere plasticity and elucidate the mechanisms underlying the diverse formation of holocentromeres.


Assuntos
Centrômero , DNA Satélite , Centrômero/genética , DNA Satélite/genética , Quebras de DNA de Cadeia Dupla , Evolução Molecular , Sequências Repetitivas de Ácido Nucleico/genética , Elementos de DNA Transponíveis/genética , Cromossomos de Plantas/genética
3.
Cancers (Basel) ; 16(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38339305

RESUMO

It is argued that carcinogenesis and speciation are evolutionary events which are based on changes in the 'karyotypic code' through a phase of 'genome instability', followed by a bottleneck of selection for the viability and adaptability of the initial cells. Genomic (i.e., chromosomal) instability is caused by (massive) DNA breakage and the subsequent mis-repair of DNA double-strand breaks (DSBs) resulting in various chromosome rearrangements. Potential tumor cells are selected for rapid somatic proliferation. Cells eventually yielding a novel species need not only to be viable and proliferation proficient, but also to have a balanced genome which, after passing meiosis as another bottleneck and fusing with an identical gamete, can result in a well-adapted organism. Such new organisms should be genetically or geographically isolated from the ancestral population and possess or develop an at least partial sexual barrier.

4.
Plants (Basel) ; 12(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37765466

RESUMO

Vegetatively propagating aquatic angiosperms, the Lemnaceae family (duckweeds) represents valuable genetic resources for circular bioeconomics and other sustainable applications. Due to extremely fast growth and laborious cultivation of in vitro collections, duckweeds are an urgent subject for cryopreservation. We developed a robust and fast DMSO-free protocol for duckweed cryopreservation by vitrification. A single-use device was designed for sampling of duckweed fronds from donor culture, further spin-drying, and subsequent transferring to cryo-tubes with plant vitrification solution 3 (PVS3). Following cultivation in darkness and applying elevated temperatures during early regrowth stage, a specific pulsed illumination instead of a diurnal regime enabled successful regrowth after the cryopreservation of 21 accessions of Spirodela, Landoltia, Lemna, and Wolffia genera, including interspecific hybrids, auto- and allopolyploids. Genome size measurements revealed no quantitative genomic changes potentially caused by cryopreservation. The expression of CBF/DREB1 genes, considered as key factors in the development of freezing tolerance, was studied prior to cooling but was not linked with duckweed regrowth after rewarming. Despite preserving chlorophyll fluorescence after rewarming, the rewarmed fronds demonstrated nearly zero photosynthetic activity, which did not recover. The novel protocol provides the basis for future routine application of cryostorage to duckweed germplasm collections, saving labor for in vitro cultivation and maintaining characterized reference and mutant samples.

5.
Plants (Basel) ; 11(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36432762

RESUMO

The predominantly vegetative propagating duckweeds are of growing commercial interest. Since clonal accessions within a respective species can vary considerably with respect to their physiological as well as biochemical traits, it is critical to be able to track the clones of species of interest after their characterization. Here, we compared the efficacy of five different genotyping methods for Spirodela polyrhiza, a species with very low intraspecific sequence variations, including polymorphic NB-ARC-related loci, tubulin-gene-based polymorphism (TBP), simple sequence repeat variations (SSR), multiplexed ISSR genotyping by sequencing (MIG-seq), and low-coverage, reduced-representation genome sequencing (GBS). Four of the five approaches could distinguish 20 to 22 genotypes out of the 23 investigated clones, while TBP resolved just seven genotypes. The choice for a particular method for intraspecific genotyping can depend on the research question and the project budget, while the combination of orthogonal methods may increase the confidence and resolution for the results obtained.

6.
Plants (Basel) ; 11(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36297698

RESUMO

Usually, chromosome sets (karyotypes) and genome sizes are rather stable for distinct species and therefore of diagnostic value for taxonomy. In combination with (cyto)genomics, both features provide essential cues for genome evolution and phylogenetic relationship studies within and between taxa above the species level. We present for the first time a survey on chromosome counts and genome size measurement for one or more accessions from all 36 duckweed species and discuss the evolutionary impact and peculiarities of both parameters in duckweeds.

7.
Front Plant Sci ; 13: 819750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310643

RESUMO

The freshwater plant water lettuce (Pistia stratiotes L.) grows in warm climatic zones and is used for phytoremediation and biomass production. P. stratiotes belongs to the Araceae, an ecologically and structurally diverse early monocot family, but the phylogenetic relationships among Araceae members are poorly understood. Ribosomal DNAs (rDNAs), including the 35S and 5S rDNA, encode the RNA components of ribosomes and are widely used in phylogenetic and evolutionary studies of various plant taxa. Here, we comprehensively characterized the chromosomal locations and molecular organization of 35S and 5S rDNA genes in water lettuce using karyological and molecular methods. Fluorescence in situ hybridization revealed a single location for the 35S and 5S rDNA loci, each on a different pair of the species' 28 chromosomes. Molecular cloning and nucleotide sequencing of 35S rDNA of P. stratiotes, the first representative Araceae sensu stricto in which such a study was performed, displayed typical structural characteristics. The full-length repeat showed high sequence conservation of the regions producing the 18S, 5.8S, and 25S rRNAs and divergence of the internal transcribed spacers ITS1 and ITS2 as well as the large intergenic spacer (IGS). Alignments of the deduced sequence of 18S rDNA with the sequences available for other Araceae and representatives of other clades were used for phylogenetic analysis. Examination of 11 IGS sequences revealed significant intra-genomic length variability due to variation in subrepeat number, with four types of units detected within the 35S rDNA locus of the P. stratiotes genome (estimated size 407 Mb/1C). Similarly, the 5S rDNA locus harbors gene units comprising a conserved 119-bp sequence encoding 5S rRNA and two types of non-transcribed spacer (NTS) sequences. Type I was classified into four subtypes, which apparently originated via progressive loss of subrepeats within the duplicated NTS region containing the 3' part of the 5S rRNA gene. The minor Type II NTS is shorter than Type I and differs in nucleotide composition. Some DNA clones containing two or three consecutive 5S rDNA repeats harbored 5S rDNA genes with different types of NTSs, confirming the mosaic composition of the 5S rDNA locus.

8.
Plant Cell ; 33(10): 3207-3234, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34273173

RESUMO

The aquatic Lemnaceae family, commonly called duckweed, comprises some of the smallest and fastest growing angiosperms known on Earth. Their tiny size, rapid growth by clonal propagation, and facile uptake of labeled compounds from the media were attractive features that made them a well-known model for plant biology from 1950 to 1990. Interest in duckweed has steadily regained momentum over the past decade, driven in part by the growing need to identify alternative plants from traditional agricultural crops that can help tackle urgent societal challenges, such as climate change and rapid population expansion. Propelled by rapid advances in genomic technologies, recent studies with duckweed again highlight the potential of these small plants to enable discoveries in diverse fields from ecology to chronobiology. Building on established community resources, duckweed is reemerging as a platform to study plant processes at the systems level and to translate knowledge gained for field deployment to address some of society's pressing needs. This review details the anatomy, development, physiology, and molecular characteristics of the Lemnaceae to introduce them to the broader plant research community. We highlight recent research enabled by Lemnaceae to demonstrate how these plants can be used for quantitative studies of complex processes and for revealing potentially novel strategies in plant defense and genome maintenance.


Assuntos
Araceae/genética , Genoma de Planta , Genômica
9.
Int J Mol Sci ; 22(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068283

RESUMO

DNA double-strand breaks (DSBs), interrupting the genetic information, are elicited by various environmental and endogenous factors. They bear the risk of cell lethality and, if mis-repaired, of deleterious mutation. This negative impact is contrasted by several evolutionary achievements for DSB processing that help maintaining stable inheritance (correct repair, meiotic cross-over) and even drive adaptation (immunoglobulin gene recombination), differentiation (chromatin elimination) and speciation by creating new genetic diversity via DSB mis-repair. Targeted DSBs play a role in genome editing for research, breeding and therapy purposes. Here, I survey possible causes, biological effects and evolutionary consequences of DSBs, mainly for students and outsiders.


Assuntos
Cromatina , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Meiose , Animais , Edição de Genes , Humanos
10.
Chromosoma ; 130(1): 15-25, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33443586

RESUMO

Duckweeds represent a small, free-floating aquatic family (Lemnaceae) of the monocot order Alismatales with the fastest growth rate among flowering plants. They comprise five genera (Spirodela, Landoltia, Lemna, Wolffiella, and Wolffia) varying in genome size and chromosome number. Spirodela polyrhiza had the first sequenced duckweed genome. Cytogenetic maps are available for both species of the genus Spirodela (S. polyrhiza and S. intermedia). However, elucidation of chromosome homeology and evolutionary chromosome rearrangements by cross-FISH using Spirodela BAC probes to species of other duckweed genera has not been successful so far. We investigated the potential of chromosome-specific oligo-FISH probes to address these topics. We designed oligo-FISH probes specific for one S. intermedia and one S. polyrhiza chromosome (Fig. 1a). Our results show that these oligo-probes cross-hybridize with the homeologous regions of the other congeneric species, but are not suitable to uncover chromosomal homeology across duckweeds genera. This is most likely due to too low sequence similarity between the investigated genera and/or too low probe density on the target genomes. Finally, we suggest genus-specific design of oligo-probes to elucidate chromosome evolution across duckweed genera.


Assuntos
Araceae/genética , Cromossomos de Plantas/genética , Evolução Molecular , Genoma de Planta , Hibridização in Situ Fluorescente/métodos , Sondas de Oligonucleotídeos/química , Araceae/classificação , Araceae/crescimento & desenvolvimento , Cariotipagem , Sondas de Oligonucleotídeos/genética , Filogenia , Especificidade da Espécie
11.
Sci Rep ; 10(1): 19230, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154426

RESUMO

Duckweeds are small, free-floating, morphologically highly reduced organisms belonging to the monocot order Alismatales. They display the most rapid growth among flowering plants, vary ~ 14-fold in genome size and comprise five genera. Spirodela is the phylogenetically oldest genus with only two mainly asexually propagating species: S. polyrhiza (2n = 40; 160 Mbp/1C) and S. intermedia (2n = 36; 160 Mbp/1C). This study combined comparative cytogenetics and de novo genome assembly based on PacBio, Illumina and Oxford Nanopore (ON) reads to obtain the first genome reference for S. intermedia and to compare its genomic features with those of the sister species S. polyrhiza. Both species' genomes revealed little more than 20,000 putative protein-coding genes, very low rDNA copy numbers and a low amount of repetitive sequences, mainly Ty3/gypsy retroelements. The detection of a few new small chromosome rearrangements between both Spirodela species refined the karyotype and the chromosomal sequence assignment for S. intermedia.


Assuntos
Araceae/genética , Cromossomos de Plantas , Genoma de Planta , Mapeamento Cromossômico , Cariótipo , Cariotipagem , Nanoporos
12.
Int J Mol Sci ; 21(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429054

RESUMO

Centromeres are essential for proper chromosome segregation to the daughter cells during mitosis and meiosis. Chromosomes of most eukaryotes studied so far have regional centromeres that form primary constrictions on metaphase chromosomes. These monocentric chromosomes vary from point centromeres to so-called "meta-polycentromeres", with multiple centromere domains in an extended primary constriction, as identified in Pisum and Lathyrus species. However, in various animal and plant lineages centromeres are distributed along almost the entire chromosome length. Therefore, they are called holocentromeres. In holocentric plants, centromere-specific proteins, at which spindle fibers usually attach, are arranged contiguously (line-like), in clusters along the chromosomes or in bands. Here, we summarize findings of ultrastructural investigations using immunolabeling with centromere-specific antibodies and super-resolution microscopy to demonstrate the structural diversity of plant centromeres. A classification of the different centromere types has been suggested based on the distribution of spindle attachment sites. Based on these findings we discuss the possible evolution and advantages of holocentricity, and potential strategies to segregate holocentric chromosomes correctly.


Assuntos
Centrômero/metabolismo , Microscopia , Plantas/metabolismo , Ciclo Celular , Cromossomos de Plantas/metabolismo , Evolução Molecular
13.
Curr Biol ; 30(12): 2312-2320.e5, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32413308

RESUMO

Most plants grow and develop by taking up nutrients from the soil while continuously under threat from foraging animals. Carnivorous plants have turned the tables by capturing and consuming nutrient-rich animal prey, enabling them to thrive in nutrient-poor soil. To better understand the evolution of botanical carnivory, we compared the draft genome of the Venus flytrap (Dionaea muscipula) with that of its aquatic sister, the waterwheel plant Aldrovanda vesiculosa, and the sundew Drosera spatulata. We identified an early whole-genome duplication in the family as source for carnivory-associated genes. Recruitment of genes to the trap from the root especially was a major mechanism in the evolution of carnivory, supported by family-specific duplications. Still, these genomes belong to the gene poorest land plants sequenced thus far, suggesting reduction of selective pressure on different processes, including non-carnivorous nutrient acquisition. Our results show how non-carnivorous plants evolved into the most skillful green hunters on the planet.


Assuntos
Evolução Biológica , Planta Carnívora/genética , Droseraceae/genética , Genoma de Planta
14.
Plant J ; 102(1): 68-84, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31733119

RESUMO

Repetitive DNA sequences and some genes are epigenetically repressed by transcriptional gene silencing (TGS). When genetic mutants are not available or problematic to use, TGS can be suppressed by chemical inhibitors. However, informed use of epigenetic inhibitors is partially hampered by the absence of any systematic comparison. In addition, there is emerging evidence that epigenetic inhibitors cause genomic instability, but the nature of this damage and its repair remain unclear. To bridge these gaps, we compared the effects of 5-azacytidine (AC), 2'-deoxy-5-azacytidine (DAC), zebularine and 3-deazaneplanocin A (DZNep) on TGS and DNA damage repair. The most effective inhibitor of TGS was DAC, followed by DZNep, zebularine and AC. We confirmed that all inhibitors induce DNA damage and suggest that this damage is repaired by multiple pathways with a critical role of homologous recombination and of the SMC5/6 complex. A strong positive link between the degree of cytidine analog-induced DNA demethylation and the amount of DNA damage suggests that DNA damage is an integral part of cytidine analog-induced DNA demethylation. This helps us to understand the function of DNA methylation in plants and opens the possibility of using epigenetic inhibitors in biotechnology.


Assuntos
Dano ao DNA , Epigênese Genética , Inativação Gênica , Adenosina/análogos & derivados , Adenosina/farmacologia , Arabidopsis/genética , Azacitidina/farmacologia , Aberrações Cromossômicas/efeitos dos fármacos , Citidina/análogos & derivados , Citidina/farmacologia , Dano ao DNA/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Decitabina/farmacologia , Epigênese Genética/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Heterocromatina/efeitos dos fármacos , Interferência de RNA/efeitos dos fármacos , Sequências de Repetição em Tandem/efeitos dos fármacos
15.
Sci Rep ; 9(1): 3234, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824726

RESUMO

Duckweeds are small, free-floating, largely asexual and highly neotenous organisms. They display the most rapid growth among flowering plants and are of growing interest in aquaculture and genome biology. Genomic and chromosomal data are still rare. Applying flow-cytometric genome size measurement, microscopic determination of frond, cell and nucleus morphology, as well as fluorescence in situ hybridization (FISH) for localization of ribosomal DNA (rDNA), we compared eleven species, representative for the five duckweed genera to search for potential correlations between genome size, cell and nuclei volume, simplified body architecture (neoteny), chromosome numbers and rDNA loci. We found a ~14-fold genome size variation (from 160 to 2203 Mbp), considerable differences in frond size and shape, highly variable guard cell and nucleus size, chromosome number (from 2n = 36 to 82) and number of 5S and 45S rDNA loci. In general, genome size is positively correlated with guard cell and nucleus volume (p < 0.001) and with the neoteny level and inversely with the frond size. In individual cases these correlations could be blurred for instance by particular body and cell structures which seem to be linked to specific floating styles. Chromosome number and rDNA loci variation between the tested species was independent of the genome size. We could not confirm previously reported intraspecific variation of chromosome numbers between individual clones of the genera Spirodela and Landoltia.


Assuntos
Araceae/genética , Tamanho do Núcleo Celular , Cromossomos de Plantas/genética , DNA de Plantas/genética , DNA Ribossômico/genética , Tamanho do Genoma , Araceae/classificação , Variação Genética , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Filogenia , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , RNA Ribossômico/genética , RNA Ribossômico 5S/genética , Especificidade da Espécie
16.
Oncoimmunology ; 7(9): e1472195, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30228941

RESUMO

A number of agents designed for immunotherapy of Acute Myeloid Leukemia (AML) are in preclinical and early clinical development. Most of them target a single antigen on the surface of AML cells. Here we describe the development and key biological properties of a tri-specific agent, the dual-targeting triplebody SPM-2, with binding sites for target antigens CD33 and CD123, and for CD16 to engage NK cells as cytolytic effectors. Primary blasts of nearly all AML patients carry at least one of these target antigens and the pair is particularly promising for the elimination of blasts and leukemia stem cells (LSCs) from a majority of AML patients by dual-targeting agents. The cytolytic activity of NK cells mediated by SPM-2 was analyzed in vitro for primary leukemic cells from 29 patients with a broad range of AML-subtypes. Blasts from all 29 patients, including patients with genomic alterations associated with an unfavorable genetic subtype, were lysed at nanomolar concentrations of SPM-2. Maximum susceptibility was observed for cells with a combined density of CD33 and CD123 above 10,000 copies/cell. Cell populations enriched for AML-LSCs (CD34pos and CD34pos CD38neg cells) from 2 AML patients carried an increased combined antigen density and were lysed at correspondingly lower concentrations of SPM-2 than unsorted blasts. These initial findings raise the expectation that SPM-2 may also be capable of eliminating AML-LSCs and thus of prolonging survival. In the future, patients with a broad range of AML subtypes may benefit from treatment with SPM-2.

17.
Plant J ; 96(3): 670-684, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30054939

RESUMO

Duckweeds are the fastest growing angiosperms and have the potential to become a new generation of sustainable crops. Although a seed plant, Spirodela polyrhiza clones rarely flower and multiply mainly through vegetative propagation. Whole-genome sequencing using different approaches and clones yielded two reference maps. One for clone 9509, supported in its assembly by optical mapping of single DNA molecules, and one for clone 7498, supported by cytogenetic assignment of 96 fingerprinted bacterial artificial chromosomes (BACs) to its 20 chromosomes. However, these maps differ in the composition of several individual chromosome models. We validated both maps further to resolve these differences and addressed whether they could be due to chromosome rearrangements in different clones. For this purpose, we applied sequential multicolor fluorescence in situ hybridization (mcFISH) to seven S. polyrhiza clones, using 106 BACs that were mapped onto the 39 pseudomolecules for clone 7498. Furthermore we integrated high-depth Oxford Nanopore (ON) sequence data for clone 9509 to validate and revise the previously assembled chromosome models. We found no major structural rearrangements between these seven clones, identified seven chimeric pseudomolecules and Illumina assembly errors in the previous maps, respectively. A new S. polyrhiza genome map with high contiguity was produced with the ON sequence data and genome-wide synteny analysis supported the occurrence of two Whole Genome Duplication events during its evolution. This work generated a high confidence genome map for S. polyrhiza at the chromosome scale, and illustrates the complementarity of independent approaches to produce whole-genome assemblies in the absence of a genetic map.


Assuntos
Araceae/genética , Cromossomos de Plantas/genética , Genoma de Planta/genética , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Hibridização in Situ Fluorescente , Nanoporos , Sintenia
18.
Sci Rep ; 8(1): 5838, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643436

RESUMO

Satellite DNA, a class of repetitive sequences forming long arrays of tandemly repeated units, represents substantial portions of many plant genomes yet remains poorly characterized due to various methodological obstacles. Here we show that the genome of the field bean (Vicia faba, 2n = 12), a long-established model for cytogenetic studies in plants, contains a diverse set of satellite repeats, most of which remained concealed until their present investigation. Using next-generation sequencing combined with novel bioinformatics tools, we reconstructed consensus sequences of 23 novel satellite repeats representing 0.008-2.700% of the genome and mapped their distribution on chromosomes. We found that in addition to typical satellites with monomers hundreds of nucleotides long, V. faba contains a large number of satellite repeats with unusually long monomers (687-2033 bp), which are predominantly localized in pericentromeric regions. Using chromatin immunoprecipitation with CenH3 antibody, we revealed an extraordinary diversity of centromeric satellites, consisting of seven repeats with chromosome-specific distribution. We also found that in spite of their different nucleotide sequences, all centromeric repeats are replicated during mid-S phase, while most other satellites are replicated in the first part of late S phase, followed by a single family of FokI repeats representing the latest replicating chromatin.


Assuntos
Período de Replicação do DNA/genética , DNA de Plantas/genética , DNA Satélite/genética , Genoma de Planta/genética , Vicia faba/genética , Centrômero/metabolismo , Imunoprecipitação da Cromatina , Mapeamento Cromossômico/métodos , Biologia Computacional , DNA de Plantas/metabolismo , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Análise de Sequência de DNA , Vicia faba/metabolismo
19.
Chromosoma ; 127(2): 229-234, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29705818

RESUMO

An increasing number of observations suggest an evolutionary switch of centromere position on monocentric eukaryotic chromosomes which otherwise display a conserved sequence of genes and markers. Such observations are particularly frequent for primates and equidae (for review see Heredity 108:59-67, 2012) but occur also in marsupials (J Hered 96:217-224, 2005) and in plants (Chromosome Res 25:299-311, 2017 and references therein). The actual mechanism(s) behind remained unclear in many cases (Proc Natl Acad Sci USA 101:6542-6547, 2004; Trends Genet 30:66-74, 2014). The same is true for de novo centromere formation on chromosomes lacking an active centromere. This article focuses on recent reports on centromere repositioning and possible mechanisms behind and addresses open questions.


Assuntos
Proteína Centromérica A/genética , Centrômero/metabolismo , Reparo do DNA , Nucleossomos/metabolismo , Fuso Acromático/metabolismo , Animais , Centrômero/ultraestrutura , Proteína Centromérica A/metabolismo , Segregação de Cromossomos , DNA/genética , DNA/metabolismo , Distúrbios no Reparo do DNA/genética , Distúrbios no Reparo do DNA/metabolismo , Distúrbios no Reparo do DNA/patologia , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Expressão Gênica , Humanos , Cinetocoros/metabolismo , Cinetocoros/ultraestrutura , Mitose , Nucleossomos/ultraestrutura , Plantas/genética , Plantas/metabolismo , Fuso Acromático/ultraestrutura
20.
Plant J ; 92(1): 57-67, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28696528

RESUMO

The possibility to predict the outcome of targeted DNA double-stranded break (DSB) repair would be desirable for genome editing. Furthermore the consequences of mis-repair of potentially cell-lethal DSBs and the underlying pathways are not yet fully understood. Here we study the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-induced mutation spectra at three selected endogenous loci in Arabidopsis thaliana by deep sequencing of long amplicon libraries. Notably, we found sequence-dependent genomic features that affected the DNA repair outcome. Deletions of 1-bp to <1000-bp size and/or very short insertions, deletions >1 kbp (all due to NHEJ) and deletions combined with insertions between 5-bp to >100 bp [caused by a synthesis-dependent strand annealing (SDSA)-like mechanism] occurred most frequently at all three loci. The appearance of single-stranded annealing events depends on the presence and distance between repeats flanking the DSB. The frequency and size of insertions is increased if a sequence with high similarity to the target site was available in cis. Most deletions were linked to pre-existing microhomology. Deletion and/or insertion mutations were blunt-end ligated or via de novo generated microhomology. While most mutation types and, to some degree, their predictability are comparable with animal systems, the broad range of deletion mutations seems to be a peculiar feature of the plant A. thaliana.


Assuntos
Arabidopsis/genética , Sistemas CRISPR-Cas/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Instabilidade Genômica , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Mutagênese Sítio-Dirigida , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...