Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 9(7)2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-28773630

RESUMO

We present a new and simple laser-based process to porosify thin film silicon using a pulsed laser. During deposition, we incorporate gas atoms or molecules into the Si thin film. Pulsed laser radiation of wavelength λ = 532 nm heats up thin film Si beyond its melting point. Upon heating, gas atoms or molecules form nm-sized thermally expanding gas bubbles in the silicon melt, until they explosively exit the film, leaving pores behind. Rapid heating and fast cooling during pulsed laser processing enable re-solidification of the liquid Si before the created pores contract and pore closure occurs within the liquid phase. Optimized plasma-enhanced chemical vapor deposition or sputtering of amorphous Si thin films on stainless steel substrate incorporates the necessary concentration of gas atoms or molecules. We are able to tailor the pore size between 50 and 550 nm by changing laser pulse energy density and film deposition parameters. Evaporated silicon containing no gas atoms forms only a few very large µ m-sized gas bubbles due to laser-induced vapor formation of evaporated solid material at the substrate-silicon interface.

2.
ChemSusChem ; 7(12): 3272-4, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25251223

RESUMO

Due to its high energy density, theoretical studies propose silicon as a promising candidate material for metal-air batteries. Herein, for the first time, experimental results detail the use of n-type doped amorphous silicon and silicon carbide as fuel in Si-air batteries. Thin-film silicon is particularly interesting for flexible and rolled batteries with high specific energies. Our Si-air batteries exhibit a specific capacity of 269 Ah kg(-1) and an average cell voltage of 0.85 V at a discharge current density of 7.9 µA cm(-2) , corresponding to a specific energy of 229 Wh kg(-1) . Favorably in terms of safety, low concentrated alkaline solution serves as electrolyte. Discharging of the Si-air cells continues as long as there is silicon available for oxidation.


Assuntos
Ar , Metais/química , Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...