Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 206: 108294, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159547

RESUMO

Plant rhamnogalacturonan lyases (RGLyases) cleave the backbone of rhamnogalacturonan I (RGI), the "hairy" pectin and polymer of the disaccharide rhamnose (Rha)-galacturonic acid (GalA) with arabinan, galactan or arabinogalactan side chains. It has been suggested that RGLyases could participate in remodeling cell walls during fruit softening, but clear evidence has not been reported. To investigate the role of RGLyases in strawberry softening, a genome-wide analysis of RGLyase genes in the genus Fragaria was performed. Seventeen genes encoding RGLyases with functional domains were identified in Fragaria × ananassa. FaRGLyase1 was the most expressed in the ripe receptacle of cv. Chandler. Transgenic strawberry plants expressing an RNAi sequence of FaRGLyase1 were obtained. Three transgenic lines yielded ripe fruits firmer than controls without other fruit quality parameters being significantly affected. The highest increase in firmness achieved was close to 32%. Cell walls were isolated from ripe fruits of two selected lines. The amount of water-soluble and chelated pectins was higher in transgenic lines than in the control. A carbohydrate microarray study showed a higher abundance of RGI epitopes in pectin fractions and in the cellulose-enriched fraction obtained from transgenic lines. Sixty-seven genes were differentially expressed in transgenic ripe fruits when compared with controls. These genes were involved in various physiological processes, including cell wall remodeling, ion homeostasis, lipid metabolism, protein degradation, stress response, and defense. The transcriptomic changes observed in FaRGLyase1 plants suggest that senescence was delayed in transgenic fruits.


Assuntos
Fragaria , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Ramnogalacturonanos/metabolismo , Pectinas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Food Res Int ; 150(Pt A): 110697, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34865745

RESUMO

Phenolic composition of young red wines has been shown to play an important role in their ageing potential. Therefore, the modulation of phenolic extraction during maceration may influence the subsequent phenolic evolution of these wines. The present work aimed to evaluate the impact of three different maceration times on the phenolic levels and evolution observed over time, using spectrophotometric and chromatography methods, and the effect on the aroma, taste, and mouthfeel sensory properties using Projective Mapping. Additionally, grape cell wall deconstruction was monitored during the extended maceration phase by GC-MS and Comprehensive Comprehensive Microarray Polymer Profiling (CoMPP). Our findings demonstrated that longer maceration times did not always correspond to an increase in wine phenolic concentration, although the level of complexity of these molecules seemed to be higher. Additionally, continuous depectination and possible solubilisation of the pectin is observed during the extended maceration which may be influencing the sensory perception of these wines. Maceration time was also shown to influence the evolution of the polymeric fraction and sensory perception of the wines.


Assuntos
Vitis , Vinho , Bebidas Alcoólicas , Odorantes/análise , Paladar , Vinho/análise
3.
Ann Bot ; 128(5): 527-543, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34192306

RESUMO

BACKGROUND AND AIMS: The necrotrophic fungus Botrytis cinerea infects a broad range of fruit crops including domesticated grapevine Vitis vinifera cultivars. Damage caused by this pathogen is severely detrimental to the table and wine grape industries and results in substantial crop losses worldwide. The apoplast and cell wall interface is an important setting where many plant-pathogen interactions take place and where some defence-related messenger molecules are generated. Limited studies have investigated changes in grape cell wall composition upon infection with B. cinerea, with much being inferred from studies on other fruit crops. METHODS: In this study, comprehensive microarray polymer profiling in combination with monosaccharide compositional analysis was applied for the first time to investigate cell wall compositional changes in the berries of wine (Sauvignon Blanc and Cabernet Sauvignon) and table (Dauphine and Barlinka) grape cultivars during Botrytis infection and tissue maceration. This was used in conjunction with scanning electron microscopy (SEM) and X-ray computed tomography (CT) to characterize infection progression. KEY RESULTS: Grapes infected at veraison did not develop visible infection symptoms, whereas grapes inoculated at the post-veraison and ripe stages showed evidence of significant tissue degradation. The latter was characterized by a reduction in signals for pectin epitopes in the berry cell walls, implying the degradation of pectin polymers. The table grape cultivars showed more severe infection symptoms, and corresponding pectin depolymerization, compared with wine grape cultivars. In both grape types, hemicellulose layers were largely unaffected, as was the arabinogalactan protein content, whereas in moderate to severely infected table grape cultivars, evidence of extensin epitope deposition was present. CONCLUSIONS: Specific changes in the grape cell wall compositional profiles appear to correlate with fungal disease susceptibility. Cell wall factors important in influencing resistance may include pectin methylesterification profiles, as well as extensin reorganization.


Assuntos
Vitis , Vinho , Botrytis , Parede Celular , Frutas , Polissacarídeos
4.
Molecules ; 26(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540867

RESUMO

This study evaluates the capacity of four hydrolytic enzymes to limit the interactions between grape cell-walls and tannins and/or to favor tannin desorption. Adsorption and desorption tests were conducted by mixing a commercial seed tannin with purified skin cell-walls from Syrah grapes, in the presence or absence of hydrolytic enzymes, in a model-wine solution. The effects of the enzymes were evaluated by measuring the tannins in solution by High Performance Liquid Chromatography (HPLC) and the changes in the cell wall polysaccharide network by Comprehensive Microarray Polymer Profiling (COMPP) while the polysaccharides liberated from cell walls were analyzed by Size Exclusion Chromatography (SEC). The results showed that the enzymes limited the interaction between tannins and cell walls, especially cellulase, pectinase and xylanase, an effect associated with the cell wall structural modifications caused by the enzymes, which reduced their capacity to bind tannins. With regards to the tannin desorption process, enzymes did not play a significant role in liberating bound tannins. Those enzymes that showed the highest effect in limiting the adsorption of tannins and in disorganizing the cell wall structure, cellulase and pectinase, did not lead to a desorption of bound tannins, although they still showed a capacity of affecting cell wall structure. The results indicate that enzymes are not able to access those polysaccharides where tannins are bound, thus, they are not a useful tool for desorbing tannins from cell walls. The practical importance implications of these findings are discussed in the manuscript.


Assuntos
Parede Celular/química , Enzimas/metabolismo , Taninos/química , Vitis/citologia , Hidrólise , Sementes/química , Solubilidade , Vinho/análise
5.
J Exp Bot ; 71(22): 7103-7117, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32856699

RESUMO

To disentangle the role of polygalacturonase (PG) genes in strawberry softening, the two PG genes most expressed in ripe receptacles, FaPG1 and FaPG2, were down-regulated. Transgenic ripe fruits were firmer than those of the wild type when PG genes were silenced individually. Simultaneous silencing of both PG genes by transgene stacking did not result in an additional increase in firmness. Cell walls from ripe fruits were characterized by a carbohydrate microarray. Higher signals of homogalacturonan and rhamnogalacturonan I pectin epitopes in polysaccharide fractions tightly bound to the cell wall were observed in the transgenic genotypes, suggesting a lower pectin solubilization. At the transcriptomic level, the suppression of FaPG1 or FaPG2 alone induced few transcriptomic changes in the ripe receptacle, but the amount of differentially expressed genes increased notably when both genes were silenced. Many genes encoding cell wall-modifying enzymes were down-regulated. The expression of a putative high affinity potassium transporter was induced in all transgenic genotypes, indicating that cell wall weakening and loss of cell turgor could be linked. These results suggest that, besides the disassembly of pectins tightly linked to the cell wall, PGs could play other roles in strawberry softening, such as the release of oligogalacturonides exerting a positive feedback in softening.


Assuntos
Fragaria , Parede Celular/metabolismo , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Pectinas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Poligalacturonase/genética , Poligalacturonase/metabolismo
6.
Plants (Basel) ; 9(7)2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32605018

RESUMO

Cell cultures derived from strawberry fruit at different developmental stages have been obtained to evaluate their potential use to study different aspects of strawberry ripening. Callus from leaf and cortical tissue of unripe-green, white, and mature-red strawberry fruits were induced in a medium supplemented with 11.3 µM 2,4-dichlorophenoxyacetic acid (2,4-D) under darkness. The transfer of the established callus from darkness to light induced the production of anthocyanin. The replacement of 2,4-D by abscisic acid (ABA) noticeably increased anthocyanin accumulation in green-fruit callus. Cell walls were isolated from the different fruit cell lines and from fruit receptacles at equivalent developmental stages and sequentially fractionated to obtain fractions enriched in soluble pectins, ester bound pectins, xyloglucans (XG), and matrix glycans tightly associated with cellulose microfibrils. These fractions were analyzed by cell wall carbohydrate microarrays. In fruit receptacle samples, pectins were abundant in all fractions, including those enriched in matrix glycans. The amount of pectin increased from green to white stage, and later these carbohydrates were solubilized in red fruit. Apparently, XG content was similar in white and red fruit, but the proportion of galactosylated XG increased in red fruit. Cell wall fractions from callus cultures were enriched in extensin and displayed a minor amount of pectins. Stronger signals of extensin Abs were detected in sodium carbonate fraction, suggesting that these proteins could be linked to pectins. Overall, the results obtained suggest that fruit cell lines could be used to analyze hormonal regulation of color development in strawberry but that the cell wall remodeling process associated with fruit softening might be masked by the high presence of extensin in callus cultures.

7.
Food Res Int ; 129: 108889, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32036932

RESUMO

Tannins are present in grape skins and seeds from where they are transferred into the must-wine matrix during the maceration stages of winemaking. However, tannin transfer is often incomplete. This could be due, among other reasons, to tannins becoming bound to grape cell wall polysaccharides, including soluble polymers, which are released during vinification and are present in high concentrations in the must/wine. The use of cell wall deconstructing enzymes offers the possibility of reducing these interactions, releasing more tannins into the final wine. The main aim of this study was to evaluate the optimal addition (individually, in combination or sequentially) of hydrolytic enzymes that would prevent tight polysaccharide-tannin associations. The use of comprehensive microarray polymer profiling (CoMPP) methodology provided key insights into how the enzyme treatments impacted the grape cell wall matrix and tannin binding. The results demonstrated that polygalacturonase + pectin-lyase promoted the highest release of tannins into solution.


Assuntos
Carboidratos/química , Parede Celular , Polissacarídeos/química , Taninos/química , Vitis , Vinho/análise , Metabolismo dos Carboidratos , Enzimas/metabolismo , Manipulação de Alimentos , Frutas/citologia
8.
Food Chem ; 278: 26-35, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30583371

RESUMO

This study evaluated the relationship between cell wall breakdown, from Shiraz grapes harvested at three different ripeness levels and the colour and phenolics extracted during alcoholic fermentation into wines. Phenolic differences between the ripeness treatments were minimal after » of the fermentation was completed. However, colour and phenolic content were significantly higher in finished wines made from 25°Brix grapes compared to those from 21°Brix and 23°Brix. Levels of grape cell wall polysaccharide deconstruction during fermentation was a determining correlative factor in relation to phenolic extractability. In this context, the de-pectination observed during ripening was found to enhance this deconstruction or "opening-up" of the grape pomace during fermentation, thus increasing the differential extraction of specific polyphenols, especially polymeric polyphenols, into the wines. Additionally, the degree of cell wall deconstruction seemed to play a role in the possible retention and extraction of specific grape proanthocyanidins, depending on their nature and polymer length.


Assuntos
Parede Celular/metabolismo , Fenóis/análise , Polissacarídeos/química , Vitis/química , Vinho/análise , Cromatografia Líquida de Alta Pressão , Cor , Frutas/química , Frutas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Monossacarídeos/análise , Análise de Componente Principal , Proantocianidinas/análise , Espectrofotometria , Vitis/metabolismo
9.
Food Chem ; 278: 36-46, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30583384

RESUMO

Phenolic compounds play an important role in colour stability and sensory properties of red wine. This study evaluated berry skin cell wall composition and how this influences grape and wine phenolics at different ripeness levels (21°Brix, 23°Brix, and 25°Brix) over two consecutive vintages. The vintage effect was highly significant, especially in the pectin fraction of the grape cell walls and affected the concentrations of certain phenolics extracted. The climatic variance between the seasons might have influenced the differences observed in the grape cell wall compositions. Firstly, a higher grape and wine phenolic content, especially in polymeric phenols, was found in 2015 wines. Additionally, grape berry cell walls, especially at the earliest stages of ripening, were found to be more intact in 2015 than in 2016. Thus, a possible relationship was found between the degree of berry intactness, especially for pectin-rich components, and the corresponding phenolic extractability during the winemaking.


Assuntos
Parede Celular/metabolismo , Fenóis/análise , Polissacarídeos/química , Vitis/química , Vinho/análise , Parede Celular/química , Cromatografia Líquida de Alta Pressão , Cor , Frutas/química , Frutas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Monossacarídeos/análise , Análise de Componente Principal , Vitis/metabolismo
10.
Nat Microbiol ; 3(11): 1274-1284, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30356154

RESUMO

Because of their agricultural value, there is a great body of research dedicated to understanding the microorganisms responsible for rumen carbon degradation. However, we lack a holistic view of the microbial food web responsible for carbon processing in this ecosystem. Here, we sampled rumen-fistulated moose, allowing access to rumen microbial communities actively degrading woody plant biomass in real time. We resolved 1,193 viral contigs and 77 unique, near-complete microbial metagenome-assembled genomes, many of which lacked previous metabolic insights. Plant-derived metabolites were measured with NMR and carbohydrate microarrays to quantify the carbon nutrient landscape. Network analyses directly linked measured metabolites to expressed proteins from these unique metagenome-assembled genomes, revealing a genome-resolved three-tiered carbohydrate-fuelled trophic system. This provided a glimpse into microbial specialization into functional guilds defined by specific metabolites. To validate our proteomic inferences, the catalytic activity of a polysaccharide utilization locus from a highly connected metabolic hub genome was confirmed using heterologous gene expression. Viral detected proteins and linkages to microbial hosts demonstrated that phage are active controllers of rumen ecosystem function. Our findings elucidate the microbial and viral members, as well as their metabolic interdependencies, that support in situ carbon degradation in the rumen ecosystem.


Assuntos
Carbono/metabolismo , Consórcios Microbianos , Rúmen , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Interações entre Hospedeiro e Microrganismos , Redes e Vias Metabólicas , Metagenômica , Filogenia , Proteômica , Rúmen/metabolismo , Rúmen/microbiologia , Rúmen/virologia , Ruminantes , Vírus/classificação , Vírus/genética , Vírus/isolamento & purificação , Vírus/metabolismo , Madeira/metabolismo
11.
J Agric Food Chem ; 66(44): 11739-11747, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30350960

RESUMO

Since Saccharomyces cerevisiae strains display no to weak pectinase activity, the utilization of external pectinase is a common practice in winemaking to enhance the extraction of compounds located in the grape berry skins during maceration. In this study, the activity of the native endopolygalacturonase of a Kluyveromyces marxianus strain, isolated from grape juice, was characterized in Shiraz grape must during alcoholic fermentation with or without prefermentative cold maceration. The wines made with K. marxianus had a higher methanol concentration, more free-run wine, an altered volatile compound profile, and displayed pectinase activity in cell-free wine samples. Moreover, the results strongly suggest that K. marxianus' pectinase released polygalacturonic acid soluble fragments, unlike fungal pectinases, which mostly release monomers. Overall, this study shows that K. marxianus is an effective pectinase producer in wine with potential benefits for wine properties.


Assuntos
Aromatizantes/química , Proteínas Fúngicas/metabolismo , Kluyveromyces/enzimologia , Poligalacturonase/metabolismo , Vinho/análise , Fermentação , Aromatizantes/metabolismo , Proteínas Fúngicas/genética , Kluyveromyces/genética , Metanol/análise , Metanol/metabolismo , Odorantes/análise , Poligalacturonase/genética , Vitis/metabolismo , Vitis/microbiologia , Vinho/microbiologia
12.
Methods Mol Biol ; 1796: 201-217, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856056

RESUMO

In this chapter, we present a two-dimensional approach for high-throughput screening of endo-cellulases as well as other endo-acting enzymes. The method is based on chromogenic substrates, produced either from purified or complex material, providing valuable information about enzyme activity toward its target as well as that same target in a context of complex natural material normally encountered in bioindustrial settings. The enzymes that can be tested using this assay can be from virtually any source: in purified form, directly from microbial cultures or even from raw materials, enabling study of the interplay between enzyme mixtures such as synergistic or inhibitory effects. By using the method of analysis described in this chapter, enzymes can be screened and evaluated quickly and information pertinent to both the inherent properties of the enzyme itself as well as predictions about its performance on complex biomass samples can be obtained.


Assuntos
Biomassa , Celulase/metabolismo , Compostos Cromogênicos/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Hidrogéis/metabolismo , Polissacarídeos/metabolismo , Ensaios Enzimáticos , Plantas/metabolismo , Solubilidade , Especificidade por Substrato
13.
Appl Environ Microbiol ; 84(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29269491

RESUMO

Fungus-growing termites rely on mutualistic fungi of the genus Termitomyces and gut microbes for plant biomass degradation. Due to a certain degree of symbiont complementarity, this tripartite symbiosis has evolved as a complex bioreactor, enabling decomposition of nearly any plant polymer, likely contributing to the success of the termites as one of the main plant decomposers in the Old World. In this study, we evaluated which plant polymers are decomposed and which enzymes are active during the decomposition process in two major genera of fungus-growing termites. We found a diversity of active enzymes at different stages of decomposition and a consistent decrease in plant components during the decomposition process. Furthermore, our findings are consistent with the hypothesis that termites transport enzymes from the older mature parts of the fungus comb through young worker guts to freshly inoculated plant substrate. However, preliminary fungal RNA sequencing (RNA-seq) analyses suggest that this likely transport is supplemented with enzymes produced in situ Our findings support that the maintenance of an external fungus comb, inoculated with an optimal mixture of plant material, fungal spores, and enzymes, is likely the key to the extraordinarily efficient plant decomposition in fungus-growing termites.IMPORTANCE Fungus-growing termites have a substantial ecological footprint in the Old World (sub)tropics due to their ability to decompose dead plant material. Through the establishment of an elaborate plant biomass inoculation strategy and through fungal and bacterial enzyme contributions, this farming symbiosis has become an efficient and versatile aerobic bioreactor for plant substrate conversion. Since little is known about what enzymes are expressed and where they are active at different stages of the decomposition process, we used enzyme assays, transcriptomics, and plant content measurements to shed light on how this decomposition of plant substrate is so effectively accomplished.


Assuntos
Biomassa , Isópteros/enzimologia , Plantas/metabolismo , Simbiose , Termitomyces/metabolismo , Animais , Isópteros/microbiologia , África do Sul , Especificidade da Espécie
14.
Nat Microbiol ; 3(2): 210-219, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255254

RESUMO

The major nutrients available to human colonic Bacteroides species are glycans, exemplified by pectins, a network of covalently linked plant cell wall polysaccharides containing galacturonic acid (GalA). Metabolism of complex carbohydrates by the Bacteroides genus is orchestrated by polysaccharide utilization loci (PULs). In Bacteroides thetaiotaomicron, a human colonic bacterium, the PULs activated by different pectin domains have been identified; however, the mechanism by which these loci contribute to the degradation of these GalA-containing polysaccharides is poorly understood. Here we show that each PUL orchestrates the metabolism of specific pectin molecules, recruiting enzymes from two previously unknown glycoside hydrolase families. The apparatus that depolymerizes the backbone of rhamnogalacturonan-I is particularly complex. This system contains several glycoside hydrolases that trim the remnants of other pectin domains attached to rhamnogalacturonan-I, and nine enzymes that contribute to the degradation of the backbone that makes up a rhamnose-GalA repeating unit. The catalytic properties of the pectin-degrading enzymes are optimized to protect the glycan cues that activate the specific PULs ensuring a continuous supply of inducing molecules throughout growth. The contribution of Bacteroides spp. to metabolism of the pectic network is illustrated by cross-feeding between organisms.


Assuntos
Bacteroides/metabolismo , Colo/microbiologia , Dieta , Pectinas/metabolismo , Polissacarídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroides/enzimologia , Bacteroides/genética , Bacteroides/crescimento & desenvolvimento , Genes Bacterianos/genética , Glicosídeo Hidrolases , Ácidos Hexurônicos , Humanos , Mutagênese Sítio-Dirigida , Células Vegetais/metabolismo
15.
Plant Physiol ; 174(2): 1051-1066, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28400496

RESUMO

The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea (Pisum sativum) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes.


Assuntos
Parede Celular/metabolismo , Pisum sativum/citologia , Pisum sativum/metabolismo , Células Vegetais/metabolismo , Vias Biossintéticas/genética , Parede Celular/genética , Epitopos/metabolismo , Esterificação , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glicosilação , Meristema/citologia , Meristema/metabolismo , Meristema/ultraestrutura , Análise em Microsséries , Modelos Biológicos , Monossacarídeos/análise , Pisum sativum/genética , Células Vegetais/ultraestrutura , Polissacarídeos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Transcrição Gênica
16.
J Vis Exp ; (115)2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27684747

RESUMO

Carbohydrates active enzymes (CAZymes) have multiple roles in vivo and are widely used for industrial processing in the biofuel, textile, detergent, paper and food industries. A deeper understanding of CAZymes is important from both fundamental biology and industrial standpoints. Vast numbers of CAZymes exist in nature (especially in microorganisms) and hundreds of thousands have been cataloged and described in the carbohydrate active enzyme database (CAZy). However, the rate of discovery of putative enzymes has outstripped our ability to biochemically characterize their activities. One reason for this is that advances in genome and transcriptome sequencing, together with associated bioinformatics tools allow for rapid identification of candidate CAZymes, but technology for determining an enzyme's biochemical characteristics has advanced more slowly. To address this technology gap, a novel high-throughput assay kit based on insoluble chromogenic substrates is described here. Two distinct substrate types were produced: Chromogenic Polymer Hydrogel (CPH) substrates (made from purified polysaccharides and proteins) and Insoluble Chromogenic Biomass (ICB) substrates (made from complex biomass materials). Both CPH and ICB substrates are provided in a 96-well high-throughput assay system. The CPH substrates can be made in four different colors, enabling them to be mixed together and thus increasing assay throughput. The protocol describes a 96-well plate assay and illustrates how this assay can be used for screening the activities of enzymes, enzyme cocktails, and broths.


Assuntos
Carboidratos , Compostos Cromogênicos , Enzimas , Bioensaio/métodos , Biomassa , Polissacarídeos , Proteínas
17.
Appl Microbiol Biotechnol ; 100(24): 10463-10477, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27418359

RESUMO

The selection of microbes by enrichment on plant biomass has been proposed as an efficient way to develop new strategies for lignocellulose saccharification. Here, we report an in-depth analysis of soil-derived microbial consortia that were trained to degrade once-used wheat straw (WS1-M), switchgrass (SG-M) and corn stover (CS-M) under aerobic and mesophilic conditions. Molecular fingerprintings, bacterial 16S ribosomal RNA (rRNA) gene amplicon sequencing and metagenomic analyses showed that the three microbial consortia were taxonomically distinct. Based on the taxonomic affiliation of protein-encoding sequences, members of the Bacteroidetes (e.g. Chryseobacterium, Weeksella, Flavobacterium and Sphingobacterium) were preferentially selected on WS1-M, whereas SG-M and CS-M favoured members of the Proteobacteria (e.g. Caulobacter, Brevundimonas, Stenotrophomonas and Xanthomonas). The highest degradation rates of lignin (~59 %) were observed with SG-M, whereas CS-M showed a high consumption of cellulose and hemicellulose. Analyses of the carbohydrate-active enzymes in the three microbial consortia showed the dominance of glycosyl hydrolases (e.g. of families GH3, GH43, GH13, GH10, GH29, GH28, GH16, GH4 and GH92). In addition, proteins of families AA6, AA10 and AA2 were detected. Analysis of secreted protein fractions (metasecretome) for each selected microbial consortium mainly showed the presence of enzymes able to degrade arabinan, arabinoxylan, xylan, ß-glucan, galactomannan and rhamnogalacturonan. Notably, these metasecretomes contain enzymes that enable us to produce oligosaccharides directly from wheat straw, sugarcane bagasse and willow. Thus, the underlying microbial consortia constitute valuable resources for the production of enzyme cocktails for the efficient saccharification of plant biomass.


Assuntos
Bactérias/classificação , Lignina/metabolismo , Metagenômica , Consórcios Microbianos , Aerobiose , Bactérias/enzimologia , Bactérias/genética , Biotransformação , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Enzimas/metabolismo , Panicum/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Triticum/química , Zea mays/química
18.
Proc Natl Acad Sci U S A ; 113(26): 7136-41, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27298375

RESUMO

The breakdown of plant cell wall (PCW) glycans is an important biological and industrial process. Noncatalytic carbohydrate binding modules (CBMs) fulfill a critical targeting function in PCW depolymerization. Defining the portfolio of CBMs, the CBMome, of a PCW degrading system is central to understanding the mechanisms by which microbes depolymerize their target substrates. Ruminococcus flavefaciens, a major PCW degrading bacterium, assembles its catalytic apparatus into a large multienzyme complex, the cellulosome. Significantly, bioinformatic analyses of the R. flavefaciens cellulosome failed to identify a CBM predicted to bind to crystalline cellulose, a key feature of the CBMome of other PCW degrading systems. Here, high throughput screening of 177 protein modules of unknown function was used to determine the complete CBMome of R. flavefaciens The data identified six previously unidentified CBM families that targeted ß-glucans, ß-mannans, and the pectic polysaccharide homogalacturonan. The crystal structures of four CBMs, in conjunction with site-directed mutagenesis, provide insight into the mechanism of ligand recognition. In the CBMs that recognize ß-glucans and ß-mannans, differences in the conformation of conserved aromatic residues had a significant impact on the topology of the ligand binding cleft and thus ligand specificity. A cluster of basic residues in CBM77 confers calcium-independent recognition of homogalacturonan, indicating that the carboxylates of galacturonic acid are key specificity determinants. This report shows that the extended repertoire of proteins in the cellulosome of R. flavefaciens contributes to an extended CBMome that supports efficient PCW degradation in the absence of CBMs that specifically target crystalline cellulose.


Assuntos
Proteínas de Bactérias/metabolismo , Celulossomas/metabolismo , Polissacarídeos/metabolismo , Ruminococcus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Celulossomas/química , Celulossomas/genética , Cristalografia por Raios X , Modelos Moleculares , Polissacarídeos/química , Ligação Proteica , Ruminococcus/química , Ruminococcus/genética
19.
Biotechnol Biofuels ; 8: 70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25969695

RESUMO

BACKGROUND: Enzymes that degrade or modify polysaccharides are widespread in pro- and eukaryotes and have multiple biological roles and biotechnological applications. Recent advances in genome and secretome sequencing, together with associated bioinformatic tools, have enabled large numbers of carbohydrate-acting enzymes to be putatively identified. However, there is a paucity of methods for rapidly screening the biochemical activities of these enzymes, and this is a serious bottleneck in the development of enzyme-reliant bio-refining processes. RESULTS: We have developed a new generation of multi-coloured chromogenic polysaccharide and protein substrates that can be used in cheap, convenient and high-throughput multiplexed assays. In addition, we have produced substrates of biomass materials in which the complexity of plant cell walls is partially maintained. CONCLUSIONS: We show that these substrates can be used to screen the activities of glycosyl hydrolases, lytic polysaccharide monooxygenases and proteases and provide insight into substrate availability within biomass. We envisage that the assays we have developed will be used primarily for first-level screening of large numbers of putative carbohydrate-acting enzymes, and the assays have the potential to be incorporated into fully or semi-automated robotic enzyme screening systems.

20.
J Biol Chem ; 290(14): 9020-36, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25657012

RESUMO

Carbohydrate-active enzymes have multiple biological roles and industrial applications. Advances in genome and transcriptome sequencing together with associated bioinformatics tools have identified vast numbers of putative carbohydrate-degrading and -modifying enzymes including glycoside hydrolases and lytic polysaccharide monooxygenases. However, there is a paucity of methods for rapidly screening the activities of these enzymes. By combining the multiplexing capacity of carbohydrate microarrays with the specificity of molecular probes, we have developed a sensitive, high throughput, and versatile semiquantitative enzyme screening technique that requires low amounts of enzyme and substrate. The method can be used to assess the activities of single enzymes, enzyme mixtures, and crude culture broths against single substrates, substrate mixtures, and biomass samples. Moreover, we show that the technique can be used to analyze both endo-acting and exo-acting glycoside hydrolases, polysaccharide lyases, carbohydrate esterases, and lytic polysaccharide monooxygenases. We demonstrate the potential of the technique by identifying the substrate specificities of purified uncharacterized enzymes and by screening enzyme activities from fungal culture broths.


Assuntos
Carboidratos/química , Enzimas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Ensaios de Triagem em Larga Escala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...