Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2487: 361-375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35687247

RESUMO

Halides are substrates and products of a number of biotechnologically important enzymes like dehalogenases, halide methyltransferases, and halogenases. Therefore, the determination of halide concentrations in samples is important. The classical methods based on mercuric thiocyanate are very dangerous, produce hazardous waste, and do not discriminate between chloride, bromide, and iodide. In this chapter, we describe a detailed protocol for the determination of halide concentrations based on the haloperoxidase-catalyzed oxidation of halides. The resulting hypohalous acids are detected using commercially available colorimetric or fluorimetric probes. The biocatalytic nature of the assays allows them to be implemented in one-pot cascade reactions with halide-generating enzymes. Since chloride is ubiquitous in biological systems, we also describe convenient photometric assays for the selective detection of bromide and iodide in the presence of chloride, obviating the need for laborious dialyses to obtain halide-free enzymes and reagents.


Assuntos
Brometos , Iodetos , Cloretos , Halogênios , Diálise Renal
2.
ChemCatChem ; 12(7): 2032-2039, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32362951

RESUMO

Halide assays are important for the study of enzymatic dehalogenation, a topic of great industrial and scientific importance. Here we describe the development of a very sensitive halide assay that can detect less than a picomole of bromide ions, making it very useful for quantifying enzymatic dehalogenation products. Halides are oxidised under mild conditions using the vanadium-dependent chloroperoxidase from Curvularia inaequalis, forming hypohalous acids that are detected using aminophenyl fluorescein. The assay is up to three orders of magnitude more sensitive than currently available alternatives, with detection limits of 20 nM for bromide and 1 µM for chloride and iodide. We demonstrate that the assay can be used to determine specific activities of dehalogenases and validate this by comparison to a well-established GC-MS method. This new assay will facilitate the identification and characterisation of novel dehalogenases and may also be of interest to those studying other halide-producing enzymes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...