Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1288961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173925

RESUMO

The MIXTA family of MYB transcription factors modulate the development of diverse epidermal features in land plants. This study investigates the evolutionary history and function of the MIXTA gene family in the early-diverging eudicot model lineage Thalictrum (Ranunculaceae), with R2R3 SBG9-A MYB transcription factors representative of the pre-core eudicot duplication and thus hereby referred to as "paleoMIXTA" (PMX). Cloning and phylogenetic analysis of Thalictrum paleoMIXTA (ThPMX) orthologs across 23 species reveal a genus-wide duplication coincident with a whole-genome duplication. Expression analysis by qPCR confirmed that the highest expression is found in carpels, while newly revealing high expression in leaves and nuanced differences between paralogs in representative polyploid species. The single-copy ortholog from the diploid species T. thalictroides (TthPMX, previously TtMYBML2), which has petaloid sepals with conical-papillate cells and trichomes on leaves, was functionally characterized by virus-induced gene silencing (VIGS), and its role in leaves was also assessed from heterologous overexpression in tobacco. Another ortholog from a species with conical-papillate cells on stamen filaments, TclPMX, was also targeted for silencing. Overexpression assays in tobacco provide further evidence that the paleoMIXTA lineage has the potential for leaf trichome function in a core eudicot. Transcriptome analysis by RNA-Seq on leaves of VIGS-treated plants suggests that TthPMX modulates leaf trichome development and morphogenesis through microtubule-associated mechanisms and that this may be a conserved pathway for eudicots. These experiments provide evidence for a combined role for paleoMIXTA orthologs in (leaf) trichomes and (floral) conical-papillate cells that, together with data from other systems, makes the functional reconstruction of a eudicot ancestor most likely as also having a combined function.

2.
iScience ; 24(7): 102797, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34355145

RESUMO

We have established experimental systems to assess the effects of early-life exposures to antibiotics on the intestinal microbiota and gene expression in the brain. This model system is highly relevant to human exposure and may be developed into a preclinical model of neurodevelopmental disorders in which the gut-brain axis is perturbed, leading to organizational effects that permanently alter the structure and function of the brain. Exposing newborn mice to low-dose penicillin led to substantial changes in intestinal microbiota population structure and composition. Transcriptomic alterations implicate pathways perturbed in neurodevelopmental and neuropsychiatric disorders. There also were substantial effects on frontal cortex and amygdala gene expression by bioinformatic interrogation, affecting multiple pathways underlying neurodevelopment. Informatic analyses established linkages between specific intestinal microbial populations and the early-life expression of particular affected genes. These studies provide translational models to explore intestinal microbiome roles in the normal and abnormal maturation of the vulnerable central nervous system.

3.
mSphere ; 5(1)2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32102942

RESUMO

Alterations in diet can have significant impact on the host, with high-fat diet (HFD) leading to obesity, diabetes, and inflammation of the gut. Although membership and abundances in gut bacterial communities are strongly influenced by diet, substantially less is known about how viral communities respond to dietary changes. Examining fecal contents of mice as the mice were transitioned from normal chow to HFD, we found significant changes in the relative abundances and the diversity in the gut of bacteria and their viruses. Alpha diversity of the bacterial community was significantly diminished in response to the diet change but did not change significantly in the viral community. However, the diet shift significantly impacted the beta diversity in both the bacterial and viral communities. There was a significant shift away from the relatively abundant Siphoviridae accompanied by increases in bacteriophages from the Microviridae family. The proportion of identified bacteriophage structural genes significantly decreased after the transition to HFD, with a conserved loss of integrase genes in all four experimental groups. In total, this study provides evidence for substantial changes in the intestinal virome disproportionate to bacterial changes, and with alterations in putative viral lifestyles related to chromosomal integration as a result of shift to HFD.IMPORTANCE Prior studies have shown that high-fat diet (HFD) can have profound effects on the gastrointestinal (GI) tract microbiome and also demonstrate that bacteria in the GI tract can affect metabolism and lean/obese phenotypes. We investigated whether the composition of viral communities that also inhabit the GI tract are affected by shifts from normal to HFD. We found significant and reproducible shifts in the content of GI tract viromes after the transition to HFD. The differences observed in virome community membership and their associated gene content suggest that these altered viral communities are populated by viruses that are more virulent toward their host bacteria. Because HFD also are associated with significant shifts in GI tract bacterial communities, we believe that the shifts in the viral community may serve to drive the changes that occur in associated bacterial communities.


Assuntos
Dieta Hiperlipídica , Fezes/virologia , Microbioma Gastrointestinal , Intestinos/virologia , Vírus/classificação , Animais , Bactérias/classificação , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética
4.
ISME J ; 13(5): 1280-1292, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30651608

RESUMO

The high-fat, high-calorie diets of westernized cultures contribute to the global obesity epidemic, and early life exposure to antibiotics may potentiate those dietary effects. Previous experiments with mice had shown that sub-therapeutic antibiotic treatment (STAT)-even restricted to early life-affected the gut microbiota, altered host metabolism, and increased adiposity throughout the lifetime of the animals. Here we carried out a large-scale cohousing experiment to investigate whether cohousing STAT and untreated (Control) mice would transfer the STAT-perturbed microbiota and transmit its impact on weight. We exposed pregnant dams and their young offspring to either low-dose penicillin (STAT) or water (Control) until weaning, and then followed the offspring as they grew and endured a switch from normal to high-fat diet at week 17 of life. Cohousing, which started at week 4, rapidly approximated the microbiota within cages, lowering the weight of STAT mice relative to non-cohoused mice. The effect, however, varied between cages, and was restricted to the first 16 weeks when diet consisted of normal chow. Once mice switched to high-fat diet, the microbiota α- and ß-diversity expanded and the effect of cohousing faded: STAT mice, again, were heavier than control mice independently of cohousing. Metabolomics revealed serum metabolites associated with STAT exposure, but no significant differences were detected in glucose or insulin tolerance. Our results show that cohousing can partly ameliorate the impact of STAT on the gut microbiota but not prevent increased weight with high-fat diet. These observations have implications for microbiota therapies aimed to resolve the collateral damage of antibiotics and their load on human obesity.


Assuntos
Antibacterianos/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/microbiologia , Penicilina G/administração & dosagem , Adiposidade/efeitos dos fármacos , Animais , Antibacterianos/efeitos adversos , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Feminino , Glucose/metabolismo , Humanos , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Penicilina G/efeitos adversos , Gravidez , Desmame
5.
Nat Microbiol ; 3(2): 234-242, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29180726

RESUMO

Antibiotic exposure in children has been associated with the risk of inflammatory bowel disease (IBD). Antibiotic use in children or in their pregnant mother can affect how the intestinal microbiome develops, so we asked whether the transfer of an antibiotic-perturbed microbiota from mothers to their children could affect their risk of developing IBD. Here we demonstrate that germ-free adult pregnant mice inoculated with a gut microbial community shaped by antibiotic exposure transmitted their perturbed microbiota to their offspring with high fidelity. Without any direct or continued exposure to antibiotics, this dysbiotic microbiota in the offspring remained distinct from controls for at least 21 weeks. By using both IL-10-deficient and wild-type mothers, we showed that both inoculum and genotype shape microbiota populations in the offspring. Because IL10-/- mice are genetically susceptible to colitis, we could assess the risk due to maternal transmission of an antibiotic-perturbed microbiota. We found that the IL10-/- offspring that had received the perturbed gut microbiota developed markedly increased colitis. Taken together, our findings indicate that antibiotic exposure shaping the maternal gut microbiota has effects that extend to the offspring, with both ecological and long-term disease consequences.


Assuntos
Antibacterianos/administração & dosagem , Colite/microbiologia , Suscetibilidade a Doenças/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Doenças Inflamatórias Intestinais/microbiologia , Animais , Colite/induzido quimicamente , Colo/imunologia , Colo/microbiologia , Colo/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Disbiose/induzido quimicamente , Disbiose/microbiologia , Fezes/microbiologia , Feminino , Doenças Inflamatórias Intestinais/induzido quimicamente , Interleucina-10 , Metagenoma/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Gravidez
7.
Infect Immun ; 83(6): 2542-56, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25847961

RESUMO

The enteric bacterium Proteus mirabilis is associated with a significant number of catheter-associated urinary tract infections (UTIs). Strict regulation of the antagonistic processes of adhesion and motility, mediated by fimbriae and flagella, respectively, is essential for disease progression. Previously, the transcriptional regulator MrpJ, which is encoded by the mrp fimbrial operon, has been shown to repress both swimming and swarming motility. Here we show that MrpJ affects an array of cellular processes beyond adherence and motility. Microarray analysis found that expression of mrpJ mimicking levels observed during UTIs leads to differential expression of 217 genes related to, among other functions, bacterial virulence, type VI secretion, and metabolism. We probed the molecular mechanism of transcriptional regulation by MrpJ using transcriptional reporters and chromatin immunoprecipitation (ChIP). Binding of MrpJ to two virulence-associated target gene promoters, the promoters of the flagellar master regulator flhDC and mrp itself, appears to be affected by the condensation state of the native chromosome, although both targets share a direct MrpJ binding site proximal to the transcriptional start. Furthermore, an mrpJ deletion mutant colonized the bladders of mice at significantly lower levels in a transurethral model of infection. Additionally, we observed that mrpJ is widely conserved in a collection of recent clinical isolates. Altogether, these findings support a role of MrpJ as a global regulator of P. mirabilis virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Óperon/genética , Proteus mirabilis/metabolismo , Proteínas Repressoras/metabolismo , Animais , Proteínas de Bactérias/genética , Cromossomos Bacterianos , Camundongos , Mutação , Proteus mirabilis/patogenicidade , Proteínas Repressoras/genética , Transcrição Gênica , Infecções Urinárias/microbiologia , Virulência
8.
Eukaryot Cell ; 12(7): 970-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23650088

RESUMO

The mitochondrial DNA of trypanosomatid protozoa consists of a complex, intercatenated network of tens of maxicircles and thousands of minicircles. This structure, called kinetoplast DNA (kDNA), requires numerous proteins and multiprotein complexes for replication, segregation, and transcription. In this study, we used a proteomic approach to identify proteins that are associated with the kDNA network. We identified a novel protein encoded by Tb927.2.6100 that was present in a fraction enriched for kDNA and colocalized the protein with kDNA by fluorescence microscopy. RNA interference (RNAi) knockdown of its expression resulted in a growth defect and changes in the proportion of kinetoplasts and nuclei in the cell population. RNAi also resulted in shrinkage and loss of the kinetoplasts, loss of maxicircle and minicircle components of kDNA at similar rates, and (perhaps secondarily) loss of edited and pre-edited mRNA. These results indicate that the Tb927.2.6100 protein is essential for the maintenance of kDNA.


Assuntos
DNA de Cinetoplasto/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Cromatografia de Afinidade , DNA Mitocondrial/metabolismo , Reação em Cadeia da Polimerase , Transporte Proteico , Interferência de RNA , RNA de Protozoário/metabolismo , Frações Subcelulares/metabolismo , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/crescimento & desenvolvimento
9.
New Phytol ; 183(3): 718-728, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19659588

RESUMO

Here, we investigated the genetic underpinnings of pollination-related floral phenotypes in Thalictrum, a ranunculid with apetalous flowers. The variable presence of petaloid features in other floral organs correlates with distinct adaptations to insect vs. wind pollination. Conical cells are present in sepals or stamens of insect-pollinated species, and in stigmas. We characterized a Thalictrum ortholog of the Antirrhinum majus transcription factor MIXTA-like2, responsible for conical cells, from three species with distinct floral morphologies, representing two pollination syndromes. Genes were cloned by PCR and analysed phylogenetically. Expression analyses were conducted by quantitative PCR and in situ hybridization, followed by functional studies in transgenic tobacco. The cloned genes encode R2R3 MYB proteins closely related to Antirrhinum AmMYBML2 and Petunia hybrida PhMYB1. Spatial expression by in situ hybridization overlaps areas of conical cells. Overexpression in tobacco induces cell outgrowths in carpel epidermis and significantly increases the height of petal conical cells. We have described the first orthologs of AmMIXTA-like2 outside the core eudicots, likely ancestral to the MIXTA/MIXTA-like1 duplication. The conserved role in epidermal cell elongation results in conical cells, micromorphological markers for petaloidy. This adaptation to attract insect pollinators was apparently lost after the evolution of wind pollination in Thalictrum.


Assuntos
Forma Celular , Epiderme Vegetal/citologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Thalictrum/citologia , Sequência de Aminoácidos , Biodiversidade , Bioensaio , Clonagem Molecular , Flores/citologia , Flores/genética , Flores/ultraestrutura , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Filogenia , Epiderme Vegetal/ultraestrutura , Proteínas de Plantas/genética , Alinhamento de Sequência , Thalictrum/genética , Thalictrum/ultraestrutura , Nicotiana/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...