Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 246: 116210, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788624

RESUMO

Arginase is an enzyme responsible for converting arginine, a semi-essential amino acid, to ornithine and urea. Arginine depletion suppresses immunity via multiple mechanisms including inhibition of T-cell and NK cell proliferation and activity. Arginase inhibition is therefore an attractive mechanism to potentially reverse immune suppression and thus has been explored as a therapy for oncology and respiratory indications. Small molecules targeting arginase present significant bioanalytical challenges for in vitro and in vivo characterization as inhibitors of arginase are typically hydrophilic in nature. The resulting low or negative LogD characteristics are incompatible with common analytical methods such as RP-ESI-MS/MS. Accordingly, a sensitive, high-throughput bioanalytical method was developed by incorporating benzoyl chloride derivatization to increase the hydrophobic characteristics of these polar analytes. Samples were separated by reversed phase chromatography on a Waters XBridge BEH C18 3.5 µm, 30 × 3 mm column using gradient elution. The mass spec was operated in positive mode using electrospray ionization. The m/z 434.1→176.1, 439.4→181.2, 334.9→150.0 and 339.9→150.0 for AZD0011, AZD0011 IS, AZD0011-PL and AZD0011-PL IS respectively were used for quantitation. The linear calibration range of the assay was 1.00-10,000 ng/mL with QC values of 5, 50 and 500 ng/mL. The qualified method presented herein exhibits a novel, robust analytical performance and was successfully applied to evaluate the in vivo ADME properties of boronic acid-based arginase inhibitor prodrug AZD0011 and its active payload AZD0011-PL.


Assuntos
Arginase , Espectrometria de Massas em Tandem , Arginase/antagonistas & inibidores , Espectrometria de Massas em Tandem/métodos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia de Fase Reversa/métodos , Animais , Cromatografia Líquida/métodos , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Interações Hidrofóbicas e Hidrofílicas , Reprodutibilidade dos Testes , Espectrometria de Massa com Cromatografia Líquida
2.
J Immunother Cancer ; 11(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553182

RESUMO

BACKGROUND: The prognosis for patients with pancreatic ductal adenocarcinoma (PDAC) remains extremely poor. It has been suggested that the adenosine pathway contributes to the ability of PDAC to evade the immune system and hence, its resistance to immuno-oncology therapies (IOT), by generating extracellular adenosine (eAdo). METHODS: Using genetically engineered allograft models of PDAC in syngeneic mice with defined and different immune infiltration and response to IOT and autochthonous tumors in KPC mice we investigated the impact of the adenosine pathway on the PDAC tumor microenvironment (TME). Flow cytometry and imaging mass cytometry (IMC) were used to characterize the subpopulation frequency and spatial distribution of tumor-infiltrating immune cells. Mass spectrometry imaging (MSI) was used to visualize adenosine compartmentalization in the PDAC tumors. RNA sequencing was used to evaluate the influence of the adenosine pathway on the shaping of the immune milieu and correlate our findings to published data sets in human PDAC. RESULTS: We demonstrated high expression of adenosine pathway components in tumor-infiltrating immune cells (particularly myeloid populations) in the murine models. MSI demonstrated that extracellular adenosine distribution is heterogeneous in tumors, with high concentrations in peri-necrotic, hypoxic regions, associated with rich myeloid infiltration, demonstrated using IMC. Protumorigenic M2 macrophages express high levels of the Adora2a receptor; particularly in the IOT resistant model. Blocking the in vivo formation and function of eAdo (Adoi), using a combination of anti-CD73 antibody and an Adora2a inhibitor slowed tumor growth and reduced metastatic burden. Additionally, blocking the adenosine pathway improved the efficacy of combinations of cytotoxic agents or immunotherapy. Adoi remodeled the TME, by reducing the infiltration of M2 macrophages and regulatory T cells. RNA sequencing analysis showed that genes related to immune modulation, hypoxia and tumor stroma were downregulated following Adoi and a specific adenosine signature derived from this is associated with a poorer prognosis in patients with PDAC. CONCLUSIONS: The formation of eAdo promotes the development of the immunosuppressive TME in PDAC, contributing to its resistance to conventional and novel therapies. Therefore, inhibition of the adenosine pathway may represent a strategy to modulate the PDAC immune milieu and improve therapy response in patients with PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Adenosina , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Imunoterapia/métodos , Microambiente Tumoral
3.
Mol Cancer Ther ; 22(5): 679-690, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36888921

RESUMO

Osimertinib is a third-generation, irreversible, oral EGFR tyrosine kinase inhibitor (TKI) recommended as first-line treatment for patients with locally advanced/metastatic EGFR mutation-positive (EGFRm) non-small cell lung cancer (NSCLC). However, MET amplification/overexpression is a common acquired osimertinib resistance mechanism. Savolitinib is an oral, potent, and highly selective MET-TKI; preliminary data suggest that combining osimertinib with savolitinib may overcome MET-driven resistance. A patient-derived xenograft (PDX) mouse model with EGFRm, MET-amplified NSCLC was tested with a fixed osimertinib dose [10 mg/kg for exposures equivalent to (≈)80 mg], combined with doses of savolitinib (0-15 mg/kg, ≈0-600 mg once daily), both with 1-aminobenzotriazole (to better match clinical half-life). After 20 days of oral dosing, samples were taken at various time points to follow the time course of drug exposure in addition to phosphorylated MET and EGFR (pMET and pEGFR) change. Population pharmacokinetics, savolitinib concentration versus percentage inhibition from baseline in pMET, and the relationship between pMET and tumor growth inhibition (TGI) were also modeled. As single agents, savolitinib (15 mg/kg) showed significant antitumor activity, reaching ∼84% TGI, and osimertinib (10 mg/kg) showed no significant antitumor activity (34% TGI, P > 0.05 vs. vehicle). Upon combination, at a fixed dose of osimertinib, significant savolitinib dose-related antitumor activity was shown, ranging from 81% TGI (0.3 mg/kg) to 84% tumor regression (15 mg/kg). Pharmacokinetic-pharmacodynamic modeling showed that the maximum inhibition of both pEGFR and pMET increased with increasing savolitinib doses. Savolitinib demonstrated exposure-related combination antitumor activity when combined with osimertinib in the EGFRm MET-amplified NSCLC PDX model.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Compostos de Anilina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
4.
Mol Cancer Ther ; 22(5): 630-645, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36912782

RESUMO

Antitumor immunity can be hampered by immunosuppressive mechanisms in the tumor microenvironment, including recruitment of arginase (ARG) expressing myeloid cells that deplete l-arginine essential for optimal T-cell and natural killer cell function. Hence, ARG inhibition can reverse immunosuppression enhancing antitumor immunity. We describe AZD0011, a novel peptidic boronic acid prodrug to deliver an orally available, highly potent, ARG inhibitor payload (AZD0011-PL). We demonstrate that AZD0011-PL is unable to permeate cells, suggesting that this compound will only inhibit extracellular ARG. In vivo, AZD0011 monotherapy leads to arginine increases, immune cell activation, and tumor growth inhibition in various syngeneic models. Antitumor responses increase when AZD0011 is combined with anti-PD-L1 treatment, correlating with increases in multiple tumor immune cell populations. We demonstrate a novel triple combination of AZD0011, anti-PD-L1, and anti-NKG2A, and combination benefits with type I IFN inducers, including polyI:C and radiotherapy. Our preclinical data demonstrate AZD0011's ability to reverse tumor immunosuppression and enhance immune stimulation and antitumor responses with diverse combination partners providing potential strategies to increase immuno-oncology therapies clinically.


Assuntos
Arginase , Linfócitos T , Humanos , Linhagem Celular Tumoral , Terapia de Imunossupressão , Tolerância Imunológica , Microambiente Tumoral
5.
Mol Pharm ; 19(1): 172-187, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34890209

RESUMO

A physiologically based pharmacokinetic model was developed to describe the tissue distribution kinetics of a dendritic nanoparticle and its conjugated active pharmaceutical ingredient (API) in plasma, liver, spleen, and tumors. Tumor growth data from MV-4-11 tumor-bearing mice were incorporated to investigate the exposure/efficacy relationship. The nanoparticle demonstrated improved antitumor activity compared to the conventional API formulation, owing to the extended released API concentrations at the site of action. Model simulations further enabled the identification of critical parameters that influence API exposure in tumors and downstream efficacy outcomes upon nanoparticle administration. The model was utilized to explore a range of dosing schedules and their effect on tumor growth kinetics, demonstrating the improved antitumor activity of nanoparticles with less frequent dosing compared to the same dose of naked APIs in conventional formulations.


Assuntos
Antineoplásicos/administração & dosagem , Dendrímeros/farmacocinética , Nanopartículas/metabolismo , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos SCID , Transplante de Neoplasias , Distribuição Tecidual , Resultado do Tratamento
6.
Sci Transl Med ; 13(609): eabb3738, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34516823

RESUMO

The clinical efficacy of epidermal growth factor receptor (EGFR)­targeted therapy in EGFR-mutant non­small cell lung cancer is limited by the development of drug resistance. One mechanism of EGFR inhibitor resistance occurs through amplification of the human growth factor receptor (MET) proto-oncogene, which bypasses EGFR to reactivate downstream signaling. Tumors exhibiting concurrent EGFR mutation and MET amplification are historically thought to be codependent on the activation of both oncogenes. Hence, patients whose tumors harbor both alterations are commonly treated with a combination of EGFR and MET tyrosine kinase inhibitors (TKIs). Here, we identify and characterize six patient-derived models of EGFR-mutant, MET-amplified lung cancer that have switched oncogene dependence to rely exclusively on MET activation for survival. We demonstrate in this MET-driven subset of EGFR TKI-refractory cancers that canonical EGFR downstream signaling was governed by MET, even in the presence of sustained mutant EGFR expression and activation. In these models, combined EGFR and MET inhibition did not result in greater efficacy in vitro or in vivo compared to single-agent MET inhibition. We further identified a reduced EGFR:MET mRNA expression stoichiometry as associated with MET oncogene dependence and single-agent MET TKI sensitivity. Tumors from 10 of 11 EGFR inhibitor­resistant EGFR-mutant, MET-amplified patients also exhibited a reduced EGFR:MET mRNA ratio. Our findings reveal that a subset of EGFR-mutant, MET-amplified lung cancers develop dependence on MET activation alone, suggesting that such patients could be treated with a single-agent MET TKI rather than the current standard-of-care EGFR and MET inhibitor combination regimens.


Assuntos
Receptores ErbB , Neoplasias Pulmonares , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
7.
Commun Biol ; 4(1): 112, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495510

RESUMO

Dual Bcl-2/Bcl-xL inhibitors are expected to deliver therapeutic benefit in many haematological and solid malignancies, however, their use is limited by tolerability issues. AZD4320, a potent dual Bcl-2/Bcl-xL inhibitor, has shown good efficacy however had dose limiting cardiovascular toxicity in preclinical species, coupled with challenging physicochemical properties, which prevented its clinical development. Here, we describe the design and development of AZD0466, a drug-dendrimer conjugate, where AZD4320 is chemically conjugated to a PEGylated poly-lysine dendrimer. Mathematical modelling was employed to determine the optimal release rate of the drug from the dendrimer for maximal therapeutic index in terms of preclinical anti-tumour efficacy and cardiovascular tolerability. The optimised candidate is shown to be efficacious and better tolerated in preclinical models compared with AZD4320 alone. The AZD4320-dendrimer conjugate (AZD0466) identified, through mathematical modelling, has resulted in an improved therapeutic index and thus enabled progression of this promising dual Bcl-2/Bcl-xL inhibitor into clinical development.


Assuntos
Antineoplásicos , Dendrímeros , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Dendrímeros/síntese química , Dendrímeros/química , Dendrímeros/farmacocinética , Dendrímeros/uso terapêutico , Cães , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Ratos , Ratos Wistar , Índice Terapêutico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína bcl-X/antagonistas & inibidores
8.
Br J Pharmacol ; 178(3): 600-613, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33125717

RESUMO

BACKGROUND AND PURPOSE: Savolitinib (AZD6094, HMPL-504, volitinib) is an oral, potent, and highly MET receptor TK inhibitor. This series of studies aimed to develop a pharmacokinetic-pharmacodynamic (PK/PD) model to link inhibition of MET phosphorylation (pMET) by savolitinib with anti-tumour activity. EXPERIMENTAL APPROACH: Cell line-derived xenograft (CDX) experiments using human lung cancer (EBC-1) and gastric cancer (MKN-45) cells were conducted in athymic nude mice using a variety of doses and schedules of savolitinib. Tumour pMET changes and growth inhibition were calculated after 28 days. Population PK/PD techniques were used to construct a PK/PD model for savolitinib. KEY RESULTS: Savolitinib showed dose- and dose frequency-dependent anti-tumour activity in the CDX models, with more frequent, lower dosing schedules (e.g., twice daily) being more effective than intermittent, higher dosing schedules (e.g., 4 days on/3 days off or 2 days on/5 days off). There was a clear exposure-response relationship, with maximal suppression of pMET of >90%. Data from additional CDX and patient-derived xenograft (PDX) models overlapped, allowing calculation of a single EC50 of 0.38 ng·ml-1 . Tumour growth modelling demonstrated that prolonged, high levels of pMET inhibition (>90%) were required for tumour stasis and regression in the models. CONCLUSION AND IMPLICATIONS: High and persistent levels of MET inhibition by savolitinib were needed for optimal monotherapy anti-tumour activity in preclinical models. The modelling framework developed here can be used to translate tumour growth inhibition from the mouse to human and thus guide choice of clinical dose and schedule.


Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas c-met , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Pirazinas , Triazinas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Clin Cancer Res ; 26(24): 6535-6549, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32988967

RESUMO

PURPOSE: Targeting Bcl-2 family members upregulated in multiple cancers has emerged as an important area of cancer therapeutics. While venetoclax, a Bcl-2-selective inhibitor, has had success in the clinic, another family member, Bcl-xL, has also emerged as an important target and as a mechanism of resistance. Therefore, we developed a dual Bcl-2/Bcl-xL inhibitor that broadens the therapeutic activity while minimizing Bcl-xL-mediated thrombocytopenia. EXPERIMENTAL DESIGN: We used structure-based chemistry to design a small-molecule inhibitor of Bcl-2 and Bcl-xL and assessed the activity against in vitro cell lines, patient samples, and in vivo models. We applied pharmacokinetic/pharmacodynamic (PK/PD) modeling to integrate our understanding of on-target activity of the dual inhibitor in tumors and platelets across dose levels and over time. RESULTS: We discovered AZD4320, which has nanomolar affinity for Bcl-2 and Bcl-xL, and mechanistically drives cell death through the mitochondrial apoptotic pathway. AZD4320 demonstrates activity in both Bcl-2- and Bcl-xL-dependent hematologic cancer cell lines and enhanced activity in acute myeloid leukemia (AML) patient samples compared with the Bcl-2-selective agent venetoclax. A single intravenous bolus dose of AZD4320 induces tumor regression with transient thrombocytopenia, which recovers in less than a week, suggesting a clinical weekly schedule would enable targeting of Bcl-2/Bcl-xL-dependent tumors without incurring dose-limiting thrombocytopenia. AZD4320 demonstrates monotherapy activity in patient-derived AML and venetoclax-resistant xenograft models. CONCLUSIONS: AZD4320 is a potent molecule with manageable thrombocytopenia risk to explore the utility of a dual Bcl-2/Bcl-xL inhibitor across a broad range of tumor types with dysregulation of Bcl-2 prosurvival proteins.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Neoplasias Hematológicas/tratamento farmacológico , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonas/farmacologia , Trombocitopenia/tratamento farmacológico , Proteína bcl-X/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Apoptose , Benzamidas/uso terapêutico , Proliferação de Células , Feminino , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Piperidinas/uso terapêutico , Sulfonas/uso terapêutico , Trombocitopenia/metabolismo , Trombocitopenia/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Immunother Cancer ; 8(2)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32727810

RESUMO

Accumulation of extracellular adenosine within the microenvironment is a strategy exploited by tumors to escape detection by the immune system. Adenosine signaling through the adenosine 2A receptor (A2AR) on immune cells elicits a range of immunosuppressive effects which promote tumor growth and limit the efficacy of immune checkpoint inhibitors. Preclinical data with A2AR inhibitors have demonstrated tumor regressions in mouse models by rescuing T cell function; however, the mechanism and role on other immune cells has not been fully elucidated. METHODS: We report here the development of a small molecule A2AR inhibitor including characterization of binding and inhibition of A2AR function with varying amounts of a stable version of adenosine. Functional activity was tested in both mouse and human T cells and dendritic cells (DCs) in in vitro assays to understand the intrinsic role on each cell type. The role of adenosine and A2AR inhibition was tested in DC differentiation assays as well as co-culture assays to access the cross-priming function of DCs. Syngeneic models were used to assess tumor growth alone and in combination with alphaprogrammed death-ligand 1 (αPD-L1). Immunophenotyping by flow cytometry was performed to examine global immune cell changes upon A2AR inhibition. RESULTS: We provide the first report of AZD4635, a novel small molecule A2AR antagonist which inhibits downstream signaling and increases T cell function as well as a novel mechanism of enhancing antigen presentation by CD103+ DCs. The role of antigen presentation by DCs, particularly CD103+ DCs, is critical to drive antitumor immunity providing rational to combine a priming agent AZD4635 with check point blockade. We find adenosine impairs the maturation and antigen presentation function of CD103+ DCs. We show in multiple syngeneic mouse tumor models that treatment of AZD4635 alone and in combination with αPD-L1 led to decreased tumor volume correlating with enhanced CD103+ function and T cell response. We extend these studies into human DCs to show that adenosine promotes a tolerogenic phenotype that can be reversed with AZD4635 restoring antigen-specific T cell activation. Our results support the novel role of adenosine signaling as an intrinsic negative regulator of CD103+ DCs maturation and priming. We show that potent inhibition of A2AR with AZD4635 reduces tumor burden and enhances antitumor immunity. This unique mechanism of action in CD103+ DCs may contribute to clinical responses as AZD4635 is being evaluated in clinical trials with IMFINZI (durvalumab, αPD-L1) in patients with solid malignancies. CONCLUSION: We provide evidence implicating suppression of adaptive and innate immunity by adenosine as a mechanism for immune evasion by tumors. Inhibition of adenosine signaling through selective small molecule inhibition of A2AR using AZD4635 restores T cell function via an internal mechanism as well as tumor antigen cross-presentation by CD103+ DCs resulting in antitumor immunity.


Assuntos
Antígenos CD/metabolismo , Antineoplásicos Imunológicos/uso terapêutico , Células Dendríticas/imunologia , Cadeias alfa de Integrinas/metabolismo , Neoplasias/imunologia , Receptor A2A de Adenosina/metabolismo , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Transdução de Sinais
11.
J Immunother Cancer ; 8(1)2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32409420

RESUMO

BACKGROUND: PD1/PDL1-directed therapies have been unsuccessful for multiple myeloma (MM), an incurable cancer of plasma cells in the bone marrow (BM). Therefore, other immune checkpoints such as extracellular adenosine and its immunosuppressive receptor should be considered. CD39 and CD73 convert extracellular ATP to adenosine, which inhibits T-cell effector functions via the adenosine receptor A2A (A2AR). We set out to investigate whether blocking the adenosine pathway could be a therapy for MM. METHODS: Expression of CD39 and CD73 on BM cells from patients and T-cell proliferation were determined by flow cytometry and adenosine production by Liquid chromatograpy-mass spectrometry (HPCL/MS). ENTPD1 (CD39) mRNA expression was determined on myeloma cells from patients enrolled in the publicly available CoMMpass study. Transplantable 5T33MM myeloma cells were used to determine the effect of inhibiting CD39, CD73 and A2AR in mice in vivo. RESULTS: Elevated level of adenosine was found in BM plasma of MM patients. Myeloma cells from patients expressed CD39, and high gene expression indicated reduced survival. CD73 was found on leukocytes and stromal cells in the BM. A CD39 inhibitor, POM-1, and an anti-CD73 antibody inhibited adenosine production and reduced T-cell suppression in vitro in coculture of myeloma and stromal cells. Blocking the adenosine pathway in vivo with a combination of Sodium polyoxotungstate (POM-1), anti-CD73, and the A2AR antagonist AZD4635 activated immune cells, increased interferon gamma production, and reduced the tumor load in a murine model of MM. CONCLUSIONS: Our data suggest that the adenosine pathway can be successfully targeted in MM and blocking this pathway could be an alternative to PD1/PDL1 inhibition for MM and other hematological cancers. Inhibitors of the adenosine pathway are available. Some are in clinical trials and they could thus reach MM patients fairly rapidly.


Assuntos
5'-Nucleotidase/metabolismo , Trifosfato de Adenosina/metabolismo , Adenosina/metabolismo , Antígenos CD/metabolismo , Apirase/metabolismo , Mieloma Múltiplo/patologia , Receptor A2A de Adenosina/química , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/metabolismo , Prognóstico , Receptor A2A de Adenosina/metabolismo , Taxa de Sobrevida
12.
Blood ; 133(6): 566-575, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30498064

RESUMO

There is a pressing need for more effective therapies to treat patients with T-cell lymphomas (TCLs), including first-line approaches that increase the response rate to cyclophosphamide, adriamycin, vincristine, and prednisone (CHOP) chemotherapy. We characterized the mitochondrial apoptosis pathway in cell lines and patient-derived xenograft (PDX) models of TCL and assessed the in vitro efficacy of BH3 mimetics, including the BCL2 inhibitor venetoclax, the BCL2/BCL-xL inhibitor navitoclax, and the novel MCL1 inhibitor AZD5991. The abundance of antiapoptotic BCL2 family members based on immunoblotting or RNA transcript levels correlated poorly with the activity of BH3 mimetics. In contrast, the functional approach BH3 profiling reliably predicted sensitivity to BH3 mimetics in vitro and in vivo. We used BH3 profiling to select TCL PDX that were dependent on MCL1. Mice xenografted with these PDX and treated with AZD5991 had markedly improved survival. The combination of AZD5991 and CHOP achieved synergy based on survival improvement beyond a mathematical "sum of benefits" model. Thus, MCL1 inhibition is a promising strategy as both a single agent and in combination with chemotherapy for patients with TCL and functional dependence on MCL1.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/metabolismo , Linfoma de Células T/tratamento farmacológico , Terapia de Alvo Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Ciclofosfamida/administração & dosagem , Doxorrubicina/administração & dosagem , Humanos , Linfoma de Células T/metabolismo , Linfoma de Células T/patologia , Compostos Macrocíclicos/administração & dosagem , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Prednisona/administração & dosagem , Células Tumorais Cultivadas , Vincristina/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nat Commun ; 9(1): 5341, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30559424

RESUMO

Mcl-1 is a member of the Bcl-2 family of proteins that promotes cell survival by preventing induction of apoptosis in many cancers. High expression of Mcl-1 causes tumorigenesis and resistance to anticancer therapies highlighting the potential of Mcl-1 inhibitors as anticancer drugs. Here, we describe AZD5991, a rationally designed macrocyclic molecule with high selectivity and affinity for Mcl-1 currently in clinical development. Our studies demonstrate that AZD5991 binds directly to Mcl-1 and induces rapid apoptosis in cancer cells, most notably myeloma and acute myeloid leukemia, by activating the Bak-dependent mitochondrial apoptotic pathway. AZD5991 shows potent antitumor activity in vivo with complete tumor regression in several models of multiple myeloma and acute myeloid leukemia after a single tolerated dose as monotherapy or in combination with bortezomib or venetoclax. Based on these promising data, a Phase I clinical trial has been launched for evaluation of AZD5991 in patients with hematological malignancies (NCT03218683).


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Mieloma Múltiplo/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Animais , Bortezomib/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Mieloma Múltiplo/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Ratos , Ratos Nus , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Immunother Cancer ; 5(1): 63, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28807001

RESUMO

BACKGROUND: T-cell checkpoint blockade and MEK inhibitor combinations are under clinical investigation. Despite progress elucidating the immuno-modulatory effects of MEK inhibitors as standalone therapies, the impact of MEK inhibition on the activity of T-cell checkpoint inhibitors remains incompletely understood. Here we sought to characterize the combined effects of MEK inhibition and anti-CTLA-4 mAb (anti-CTLA-4) therapy, examining effects on both T-cells and tumor microenvironment (TME). METHODS: In mice, the effects of MEK inhibition, via selumetinib, and anti-CTLA-4 on immune responses to keyhole limpet haemocyanin (KLH) immunization were monitored using ex vivo functional assays with splenocytes. In a KRAS-mutant CT26 mouse colorectal cancer model, the impact on the tumor microenvironment (TME) and the spleen were evaluated by flow cytometry. The TME was further examined by gene expression and immunohistochemical analyses. The combination and sequencing of selumetinib and anti-CTLA-4 were also evaluated in efficacy studies using the CT26 mouse syngeneic model. RESULTS: Anti-CTLA-4 enhanced the generation of KLH specific immunity following KLH immunization in vivo; selumetinib was found to reduce, but did not prevent, this enhancement of immune response by anti-CTLA-4 in vivo. In the CT26 mouse model, anti-CTLA-4 treatment led to higher expression levels of the immunosuppressive mediators, Cox-2 and Arg1 in the TME. Combination of anti-CTLA-4 with selumetinib negated this up-regulation of Cox-2 and Arg1, reduced the frequency of CD11+ Ly6G+ myeloid cells, and led to the accumulation of differentiating monocytes at the Ly6C+ MHC+ intermediate state in the tumor. We also report that MEK inhibition had limited impact on anti-CTLA-4-mediated increases in T-cell infiltration and T-cell activation in CT26 tumors. Finally, we show that pre-treatment, but not concurrent treatment, with selumetinib enhanced the anti-tumor activity of anti-CTLA-4 in the CT26 model. CONCLUSION: These data provide evidence that MEK inhibition can lead to changes in myeloid cells and immunosuppressive factors in the tumor, thus potentially conditioning the TME to facilitate improved response to anti-CTLA-4 treatment. In summary, the use of MEK inhibitors to alter the TME as an approach to enhance the activities of immune checkpoint inhibitors warrants further investigation in clinical trials.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Benzimidazóis/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Benzimidazóis/farmacologia , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Reprogramação Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Clin Cancer Res ; 23(6): 1531-1541, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-27663586

RESUMO

Purpose: The emergence of EGFR inhibitors such as gefitinib, erlotinib, and osimertinib has provided novel treatment opportunities in EGFR-driven non-small cell lung cancer (NSCLC). However, most patients with EGFR-driven cancers treated with these inhibitors eventually relapse. Recent efforts have identified the canonical Wnt pathway as a mechanism of protection from EGFR inhibition and that inhibiting tankyrase, a key player in this pathway, is a potential therapeutic strategy for the treatment of EGFR-driven tumors.Experimental Design: We performed a preclinical evaluation of tankyrase inhibitor AZ1366 in combination with multiple EGFR-inhibitors across NSCLC lines, characterizing its antitumor activity, impingement on canonical Wnt signaling, and effects on gene expression. We performed pharmacokinetic and pharmacodynamic profiling of AZ1366 in mice and evaluated its therapeutic activity in an orthotopic NSCLC model.Results: In combination with EGFR inhibitors, AZ1366 synergistically suppressed proliferation of multiple NSCLC lines and amplified global transcriptional changes brought about by EGFR inhibition. Its ability to work synergistically with EGFR inhibition coincided with its ability to modulate the canonical Wnt pathway. Pharmacokinetic and pharmacodynamic profiling of AZ1366-treated orthotopic tumors demonstrated clinically relevant serum drug levels and intratumoral target inhibition. Finally, coadministration of an EGFR inhibitor and AZ1366 provided better tumor control and improved survival for Wnt-responsive lung cancers in an orthotopic mouse model.Conclusions: Tankyrase inhibition is a potent route of tumor control in EGFR-dependent NSCLC with confirmed dependence on canonical Wnt signaling. These data strongly support further evaluation of tankyrase inhibition as a cotreatment strategy with EGFR inhibition in an identifiable subset of EGFR-driven NSCLC. Clin Cancer Res; 23(6); 1531-41. ©2016 AACR.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores Enzimáticos/administração & dosagem , Receptores ErbB/antagonistas & inibidores , Tanquirases/antagonistas & inibidores , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Gefitinibe , Humanos , Camundongos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Quinazolinas/administração & dosagem , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Oncotarget ; 7(36): 57651-57670, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27472392

RESUMO

Lung cancer is the most common cause of cancer death globally with a significant, unmet need for more efficacious treatments. The receptor tyrosine kinase MET has been implicated as an oncogene in numerous cancer subtypes, including non-small cell lung cancer (NSCLC). Here we explore the therapeutic potential of savolitinib (volitinib, AZD6094, HMPL-504), a potent and selective MET inhibitor, in NSCLC. In vitro, savolitinib inhibits MET phosphorylation with nanomolar potency, which correlates with blockade of PI3K/AKT and MAPK signaling as well as MYC down-regulation. In vivo, savolitinib causes inhibition of these pathways and significantly decreases growth of MET-dependent xenografts. To understand resistance mechanisms, we generated savolitinib resistance in MET-amplified NSCLC cell lines and analyzed individual clones. We found that upregulation of MYC and constitutive mTOR pathway activation is a conserved feature of resistant clones that can be overcome by knockdown of MYC or dual mTORC1/2 inhibition. Lastly, we demonstrate that mechanisms of resistance are heterogeneous, arising via a switch to EGFR dependence or by a requirement for PIM signaling. This work demonstrates the efficacy of savolitinib in NSCLC and characterizes acquired resistance, identifying both known and novel mechanisms that may inform combination strategies in the clinic.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/metabolismo , Pirazinas/química , Serina-Treonina Quinases TOR/metabolismo , Triazinas/química , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação para Baixo , Receptores ErbB/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-met/metabolismo
17.
Oncotarget ; 7(19): 28273-85, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27070088

RESUMO

BACKGROUND: Dysregulation of the canonical Wnt signaling pathway has been implicated in colorectal cancer (CRC) development as well as incipient stages of malignant transformation. In this study, we investigated the antitumor effects of AZ1366 (a novel tankyrase inhibitor) as a single agent and in combination with irinotecan in our patient derived CRC explant xenograft models. RESULTS: Six out of 18 CRC explants displayed a significant growth reduction to AZ1366. There was one CRC explant (CRC040) that reached the threshold of sensitivity (TGII ≤ 20%) in this study. In addition, the combination of AZ1366 + irinotecan demonstrated efficacy in 4 out of 18 CRC explants. Treatment effects on the WNT pathway revealed that tankyrase inhibition was ineffective at reducing WNT dependent signaling. However, the anti-tumor effects observed in this study were likely a result of alternative tankyrase effects whereby tankyrase inhibition reduced NuMA levels. MATERIALS AND METHODS: Eighteen CRC explants were treated with AZ1366 single agent or in combination for 28 days and treatment responses were assessed. Pharmacokinetic (AZ1366 drug concentrations) and pharmacodynamic effects (Axin2 levels) were investigated over 48 hours. Immunohistochemistry of nuclear ß-catenin levels as well as western blot was employed to examine the treatment effects on the WNT pathway as well as NuMA. CONCLUSIONS: Combination AZ1366 and irinotecan achieved greater anti-tumor effects compared to monotherapy. Activity was limited to CRC explants that displayed irinotecan resistance and increased protein levels of tankyrase and NuMA.


Assuntos
Antineoplásicos/farmacologia , Camptotecina/análogos & derivados , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Tanquirases/antagonistas & inibidores , Adulto , Idoso , Animais , Proteína Axina/biossíntese , Proteína Axina/efeitos dos fármacos , Camptotecina/farmacologia , Neoplasias Colorretais/enzimologia , Feminino , Humanos , Irinotecano , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Clin Cancer Res ; 21(12): 2811-9, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25779944

RESUMO

PURPOSE: Papillary renal cell carcinoma (PRCC) is the second most common cancer of the kidney and carries a poor prognosis for patients with nonlocalized disease. The HGF receptor MET plays a central role in PRCC and aberrations, either through mutation, copy number gain, or trisomy of chromosome 7 occurring in the majority of cases. The development of effective therapies in PRCC has been hampered in part by a lack of available preclinical models. We determined the pharmacodynamic and antitumor response of the selective MET inhibitor AZD6094 in two PRCC patient-derived xenograft (PDX) models. EXPERIMENTAL DESIGN: Two PRCC PDX models were identified and MET mutation status and copy number determined. Pharmacodynamic and antitumor activity of AZD6094 was tested using a dose response up to 25 mg/kg daily, representing clinically achievable exposures, and compared with the activity of the RCC standard-of-care sunitinib (in RCC43b) or the multikinase inhibitor crizotinib (in RCC47). RESULTS: AZD6094 treatment resulted in tumor regressions, whereas sunitinib or crizotinib resulted in unsustained growth inhibition. Pharmacodynamic analysis of tumors revealed that AZD6094 could robustly suppress pMET and the duration of target inhibition was dose related. AZD6094 inhibited multiple signaling nodes, including MAPK, PI3K, and EGFR. Finally, at doses that induced tumor regression, AZD6094 resulted in a dose- and time-dependent induction of cleaved PARP, a marker of cell death. CONCLUSIONS: Data presented provide the first report testing therapeutics in preclinical in vivo models of PRCC and support the clinical development of AZD6094 in this indication.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Pirazinas/farmacologia , Triazinas/farmacologia , Animais , Antineoplásicos/administração & dosagem , Carcinoma Papilar/tratamento farmacológico , Carcinoma Papilar/genética , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Crizotinibe , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Indóis/farmacologia , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas c-met/genética , Pirazinas/administração & dosagem , Pirazóis/farmacologia , Piridinas/farmacologia , Pirróis/farmacologia , Sunitinibe , Triazinas/administração & dosagem , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
MAbs ; 6(6): 1560-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25484045

RESUMO

Multiple therapeutic agonists of death receptor 5 (DR5) have been developed and are under clinical evaluation. Although these agonists demonstrate significant anti-tumor activity in preclinical models, the clinical efficacy in human cancer patients has been notably disappointing. One possible explanation might be that the current classes of therapeutic molecules are not sufficiently potent to elicit significant response in patients, particularly for dimeric antibody agonists that require secondary cross-linking via Fcγ receptors expressed on immune cells to achieve optimal clustering of DR5. To overcome this limitation, a novel multivalent Nanobody approach was taken with the goal of generating a significantly more potent DR5 agonist. In the present study, we show that trivalent DR5 targeting Nanobodies mimic the activity of natural ligand, and furthermore, increasing the valency of domains to tetramer and pentamer markedly increased potency of cell killing on tumor cells, with pentamers being more potent than tetramers in vitro. Increased potency was attributed to faster kinetics of death-inducing signaling complex assembly and caspase-8 and caspase-3 activation. In vivo, multivalent Nanobody molecules elicited superior anti-tumor activity compared to a conventional DR5 agonist antibody, including the ability to induce tumor regression in an insensitive patient-derived primary pancreatic tumor model. Furthermore, complete responses to Nanobody treatment were obtained in up to 50% of patient-derived primary pancreatic and colon tumor models, suggesting that multivalent DR5 Nanobodies may represent a significant new therapeutic modality for targeting death receptor signaling.


Assuntos
Caspases/imunologia , Neoplasias/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Anticorpos de Domínio Único/imunologia , Animais , Afinidade de Anticorpos/imunologia , Western Blotting , Caspases/biossíntese , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Células Cultivadas , Relação Dose-Resposta a Droga , Indução Enzimática/efeitos dos fármacos , Células HCT116 , Humanos , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Nus , Camundongos SCID , Neoplasias/tratamento farmacológico , Multimerização Proteica , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/farmacologia , Ressonância de Plasmônio de Superfície , Ensaios Antitumorais Modelo de Xenoenxerto
20.
PLoS One ; 9(10): e108371, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25289887

RESUMO

Dinaciclib is a potent CDK1, 2, 5 and 9 inhibitor being developed for the treatment of cancer. Additional understanding of antitumor mechanisms and identification of predictive biomarkers are important for its clinical development. Here we demonstrate that while dinaciclib can effectively block cell cycle progression, in vitro and in vivo studies, coupled with mouse and human pharmacokinetics, support a model whereby induction of apoptosis is a main mechanism of dinaciclib's antitumor effect and relevant to the clinical duration of exposure. This was further underscored by kinetics of dinaciclib-induced downregulation of the antiapoptotic BCL2 family member MCL1 and correlation of sensitivity with the MCL1-to-BCL-xL mRNA ratio or MCL1 amplification in solid tumor models in vitro and in vivo. This MCL1-dependent apoptotic mechanism was additionally supported by synergy with the BCL2, BCL-xL and BCL-w inhibitor navitoclax (ABT-263). These results provide the rationale for investigating MCL1 and BCL-xL as predictive biomarkers for dinaciclib antitumor response and testing combinations with BCL2 family member inhibitors.


Assuntos
Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neoplasias/metabolismo , Compostos de Piridínio/farmacologia , Proteína bcl-X/metabolismo , Compostos de Anilina/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Óxidos N-Cíclicos , Modelos Animais de Doenças , Diterpenos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Compostos de Epóxi/farmacologia , Feminino , Dosagem de Genes , Humanos , Indolizinas , Masculino , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Neoplasias/genética , Fenantrenos/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína bcl-X/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...