Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 192: 117-127, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29929170

RESUMO

The root uptake of radiocaesium by different plant parts of Swiss chard (Beta vulgaris L. var. cicla), cabbage (Brassica oleracea L. var. capitata) and sweet corn (Zea mays L. var. saccharata) and the potential influence of K-fertilising on the transfer behaviour was studied in allophanic volcanic soils (umbric andosol and dystric fluvisol) in Chile under temperate climate and heavy rainfall conditions (∼2660 mm y-1) over several vegetation periods. The soils were spiked homogeneously to 0.20 m depth with 100 kBq 134Cs m-2 and activity concentrations measured. The transfer factor (TF, on a dry mass basis) to Swiss chard had a clear exponential decrease within each crop year for both soil types, either K-fertilised or unfertilised. The highest values of the TFs to Swiss chard were at the beginning of the harvests, and the half-times of TF decrease ranged between 52 and 137 d for umbric andosol and between 40 and 164 d for dystric fluvisol. Over the five seasons there was no consistent ageing effect based on TF in either soil types for the three studied crops. The effect of 134Cs foliar uptake by Swiss chard from resuspended soil was estimated to account for about 70% (external leaves) and 30% (internal leaves) increase in the TF for the K-unfertilised umbric andosol, and showed an ambiguous behaviour for the K-fertilised umbric andosol. Consequently foliar uptake does not explain the 370 and 500% increase of the TF to Swiss chard leaves determined during the third growing period in the umbric andosol without and with K-fertilisation, respectively. Therefore an uncertainty factor of 3-5 is recommended to be taken into account when using this parameter for dose calculations. The TF to Swiss chard was found to be higher than previously reported values. The TF to cabbage and sweet corn plant parts was found to be within the range of previously reported values. Normal K-fertilisation resulted in about 2.4-fold reduction in 134Cs TF to Swiss chard, 2.3-fold to sweet corn and 3.0-fold to cabbage.


Assuntos
Beta vulgaris/química , Brassica/química , Radioisótopos de Césio/análise , Poluentes Radioativos do Solo/análise , Zea mays/química , Chile , Produtos Agrícolas/química , Solo/química , Verduras/química
2.
Sci Total Environ ; 618: 1114-1124, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29055595

RESUMO

Land degradation is a problem affecting the sustainability of commercial forest plantations. The identification of critical areas prone to erosion can assist this activity to better target soil conservation efforts. Here we present the first use of the carbon-13 signatures of fatty acids (C14 to C24) in soil samples for spatial and temporal tracing of sediment transport in river bodies of upland commercial forest catchments in Chile. This compound-specific stable isotope (CSSI) technique was tested as a fingerprinting approach to determine the degree of soil erosion in pre-harvested forest catchments with surface areas ranging from 12 to 40ha. For soil apportionment a mixing model based on a Bayesian inference framework was used (CSSIAR v.2.0). Approximately four potential sediment sources were used for the calculations of all of the selected catchments. Unpaved forestry roads were shown to be the main source of sediment deposited at the outlet of the catchments (30-75%). Furthermore, sampling along the stream channel demonstrated that sediments were mainly comprised of sediment coming from the unpaved roads in the upper part of the catchments (74-98%). From this it was possible to identify the location and type of primary land use contributing to the sediment delivered at the outlet of the catchments. The derived information will allow management to focus efforts to control or mitigate soil erosion by improving the runoff features of the forest roads. The use of this CSSI technique has a high potential to help forestry managers and decision makers to evaluate and mitigate sources of soil erosion in upland forest catchments. It is important to highlight that this technique can also be a good complement to other soil erosion assessment and geological fingerprinting techniques, especially when attempting to quantify (sediment loads) and differentiate which type of land use most contributes to sediment accumulation.

3.
J Environ Qual ; 35(5): 1756-63, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16899746

RESUMO

Rapid and reliable methods for documenting soil erosion associated with forest harvest operations are needed to support the development of best management practices for soil and water conservation. To address this need, the potential for using 7Be measurements to estimate patterns and amounts of soil redistribution associated with individual post-harvest events was explored. The 7Be technique, which was originally developed for use on agricultural land, was employed to estimate soil redistribution associated with a period of heavy rainfall within a harvested forest area located in the Lake Region of Chile (39 degrees 44'7'' S, 73 degrees 10'39'' W; 22% slope; and mean annual rainfall 2300 mm yr(-1)). The results provided by the 7Be technique were validated against direct measurements of soil gain or loss during the same period obtained using erosion pins. The information produced by the two approaches was similar. The results of this study demonstrate the potential for using 7Be measurements to document event-based erosion in recently harvested forest areas.


Assuntos
Berílio/análise , Monitoramento Ambiental , Modelos Teóricos , Solo/análise , Árvores , Chile , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...