Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 59(3): 1612-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25547351

RESUMO

Echinocandins have become the agents of choice for early and specific antifungal treatment in critically ill patients. In vitro studies and clinical case reports revealed a possible impact of echinocandin treatment on cardiac function. The aim of our study was to evaluate echinocandin-induced cardiac failure. Using an in vivo rat model, we assessed hemodynamic parameters and time to hemodynamic failure after central venous application (vena jugularis interna) of anidulafungin (low-dose group, 2.5 mg/kg body weight [BW]; high-dose group, 25 mg/kg BW), caspofungin (low-dose group, 0.875 mg/kg BW; high-dose group, 8.75 mg/kg BW), micafungin (low-dose group, 3 mg/kg BW; high-dose group, 30 mg/kg BW), and placebo (0.9% sodium chloride). Left ventricular heart tissue was collected to determine mitochondrial enzyme activity via spectrophotometric measurements. mRNA expression of transcriptional regulators and primary mitochondrial transcripts, mitochondrial DNA (mtDNA) content, and citrate synthase activity were also explored. Animals receiving high-dose anidulafungin or caspofungin showed an immediate decrease in hemodynamic function. All of the subjects in these groups died during the observation period. Every animal in the untreated control group survived (P < 0.001). Hemodynamic failure was not noticed in the anidulafungin and caspofungin low-dose groups. Micafungin had no impact on cardiac function. In analyzing mitochondrial enzyme activity and mitochondrial transcripts, we found no association between echinocandin administration and the risk for hemodynamic failure. Further experimental studies are needed to elucidate the underlying mechanisms involved in cardiotoxic echinocandin effects. In addition, randomized controlled clinical trials are needed to explore the clinical impact of echinocandin treatment in critically ill patients.


Assuntos
Antifúngicos/efeitos adversos , Equinocandinas/efeitos adversos , Ventrículos do Coração/efeitos dos fármacos , Anidulafungina , Animais , Caspofungina , DNA Mitocondrial/efeitos dos fármacos , Insuficiência Cardíaca/induzido quimicamente , Hemodinâmica/efeitos dos fármacos , Lipopeptídeos/efeitos adversos , Masculino , Micafungina , Ratos , Ratos Endogâmicos Lew
2.
Nucleic Acids Res ; 42(19): 11941-51, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25294833

RESUMO

Insulators functionally separate active chromatin domains from inactive ones. The insulator factor, CTCF, has been found to bind to boundaries and to mediate insulator function. CTCF binding sites are depleted for the histone modification H3K27me3 and are enriched for the histone variant H3.3. In order to determine whether demethylation of H3K27me3 and H3.3 incorporation are a requirement for CTCF binding at domain boundaries or whether CTCF causes these changes, we made use of the LacI DNA binding domain to control CTCF binding by the Lac inducer IPTG. Here we show that, in contrast to the related factor CTCFL, the N-terminus plus zinc finger domain of CTCF is sufficient to open compact chromatin rapidly. This is preceded by incorporation of the histone variant H3.3, which thereby removes the H3K27me3 mark. This demonstrates the causal role for CTCF in generating the chromatin features found at insulators. Thereby, spreading of a histone modification from one domain through the insulator into the neighbouring domain is inhibited.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Elementos Isolantes , Proteínas Repressoras/metabolismo , Fator de Ligação a CCCTC , Linhagem Celular , Cromatina/química , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Metilação , Proteínas Repressoras/química , Proteínas Repressoras/fisiologia , Dedos de Zinco
3.
J Surg Res ; 188(2): 480-8, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24565505

RESUMO

BACKGROUND: During the course of sepsis, often myocardial depression with hemodynamic impairment occurs. Acetylcholine, the main transmitter of the parasympathetic Nervus vagus, has been shown to be of importance for the transmission of signals within the immune system and also for a variety of other functions throughout the organism. Hypothesizing a potential correlation between this dysfunction and hemodynamic impairment, we wanted to assess the impact of vagal stimulation on myocardial inflammation and function in a rat model of lipopolysaccharide (LPS)-induced septic shock. As the myocardial tissue is (sparsely) innervated by the N. vagus, there might be an important anti-inflammatory effect in the heart, inhibiting proinflammatory gene expression in cardiomyocytes and improving cardiac function. MATERIALS AND METHODS: We performed stimulation of the right cervical branch of the N. vagus in vagotomized, endotoxemic (1 mg/kg body weight LPS, intravenously) rats. Hemodynamic parameters were assessed over time using a left ventricular pressure-volume catheter. After the experiments, hearts and blood plasma were collected, and the expression of proinflammatory cytokines was measured using quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS: After vagotomy, the inflammatory response was aggravated, measurable by elevated cytokine levels in plasma and ventricular tissue. In concordance, cardiac impairment during septic shock was pronounced in these animals. To reverse both hemodynamic and immunologic effects of diminished vagal tone, even a brief stimulation of the N. vagus was enough during initial LPS infusion. CONCLUSIONS: Overall, the N. vagus might play a major role in maintaining hemodynamic stability and cardiac immune homeostasis during septic shock.


Assuntos
Regulação para Baixo/fisiologia , Endotoxemia/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Choque Séptico/fisiopatologia , Nervo Vago/patologia , Anestesia , Animais , Carnitina O-Acetiltransferase/metabolismo , Colina O-Acetiltransferase/metabolismo , Endotoxemia/patologia , Hemodinâmica , Inflamação/patologia , Inflamação/fisiopatologia , Interleucina-1beta/sangue , Masculino , Ratos , Ratos Endogâmicos Lew , Choque Séptico/patologia , Fator de Necrose Tumoral alfa/sangue , Vagotomia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...