Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(5): e0214756, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31095587

RESUMO

BACKGROUND & AIM: Primary hepatic angiosarcoma is a rare tumor with poor prognosis. The aim of this study was to generate a new angiosarcoma model to improve research on hepatic angiosarcoma. METHODS: Pigs sus scrofa were treated with different regimens of diethylnitrosamine (DENA). Tissues were analyzed by histology and immunohistochemistry. Serum parameters were determined. Angiosarcoma tissue was investigated for chromosomal aberrations by aCGH analysis. RESULTS: Animals of almost all different treatment regimens developed a multitude of variable liver lesions. Different tumor types such as granulation tissue type, cellular-like, hyalinization necrosis-like, angiosarcoma-like, dysplastic nodule-like, hepatocellular-like, glandular structure-like, and leiomyoma-like lesions were observed. Weekly treatment with 15 mg/kg for up to 52 weeks or a single shot of 200 mg/kg DENA led to the development of hepatic angiosarcomas. aCGH analysis of angiosarcoma tissue revealed increased alterations in tumors compared to non-tumorous tissue. Most of the chromosomal alterations were found on chromosomes 6, 7, 12, and 14. CONCLUSION: In this preliminary study treatment of sus scrofa with weekly injections of 15 mg/kg DENA results in a new model for primary hepatic angiosarcoma. This model may help to shed light on the pathomechanisms of primary hepatic angiosarcoma and might therefore open new treatment options.


Assuntos
Dietilnitrosamina/toxicidade , Hemangiossarcoma/patologia , Neoplasias Hepáticas/patologia , Animais , Biomarcadores Tumorais/sangue , Modelos Animais de Doenças , Hemangiossarcoma/induzido quimicamente , Hemangiossarcoma/diagnóstico por imagem , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/diagnóstico por imagem , Suínos , Tomografia Computadorizada por Raios X
2.
Cell Physiol Biochem ; 52(4): 787-801, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30946555

RESUMO

BACKGROUND/AIMS: Hepatocellular carcinoma (HCC) represents the second most common cause of cancer-related deaths worldwide, not least due to its high chemoresistance. The long non-coding RNA nuclear paraspeckle assembly transcript 1 (NEAT1), localised in nuclear paraspeckles, has been shown to enhance chemoresistance in several cancer types. Since data on NEAT1 in HCC chemosensitivity are completely lacking and chemoresistance is linked to poor prognosis, we aimed to study NEAT1 expression in HCC chemoresistance and its link to HCC prognosis. METHODS: NEAT1 expression was determined in either sensitive, or sorafenib, or doxorubicin resistant HepG2, PLC/PRF/5, and Huh7 cells by qPCR. Paraspeckles were detected by immunostaining of paraspeckle component 1 (PSPC1) in cell culture and in a cohort of HCC patients. PSPC1 expression was correlated with clinical data. The expression of transcript variants of NEAT1 and transcripts encoding the paraspeckle-associated proteins was analysed in the TCGA liver cancer data set. RESULTS: NEAT1 was overexpressed in all three sorafenib and doxorubicin resistant cell lines. Paraspeckles were present in all chemoresistant cells, whereas no signal was detected in the sensitive cells. Expression of NEAT1 transcripts as well as transcripts encoding PSPC1, NONO, and RBM14 was increased in tumour tissue. Expression of PSPC1, NONO, and RBM14 transcripts was significantly associated with poor survival, whereas NEAT1 expression was not. Immunohistochemical analysis revealed that nuclear and cytoplasmic PSPC1-positivity was significantly associated with shorter overall survival of HCC patients. CONCLUSION: Our data show an induction of NEAT1 in HCC chemoresistance and a high correlation of transcripts encoding paraspeckle-associated proteins with poor survival in HCC. Therefore, NEAT1, PSPC1, NONO, and RBM14 might be promising targets for novel HCC therapies, and the paraspeckle-associated proteins might be clinical markers and predictors for poor survival in HCC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Hepáticas/patologia , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Antineoplásicos/uso terapêutico , Área Sob a Curva , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/mortalidade , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Estimativa de Kaplan-Meier , Fígado/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/mortalidade , Masculino , Pessoa de Meia-Idade , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas Nucleares/genética , Fatores de Transcrição de Octâmero/genética , Fatores de Transcrição de Octâmero/metabolismo , Prognóstico , Modelos de Riscos Proporcionais , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Curva ROC , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico
3.
Cell Stress ; 1(1): 37-54, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31225433

RESUMO

The long non-coding RNA (lncRNA) H19 represents a maternally expressed and epigenetically regulated imprinted gene product and is discussed to have either tumor-promoting or tumor-suppressive actions. Recently, H19 was shown to be regulated under inflammatory conditions. Therefore, aim of this study was to determine the function of H19 in hepatocellular carcinoma (HCC), an inflammation-associated type of tumor. In four different human HCC patient cohorts H19 was distinctly downregulated in tumor tissue compared to normal or non-tumorous adjacent tissue. We therefore determined the action of H19 in three different human hepatoma cell lines (HepG2, Plc/Prf5, and Huh7). Clonogenicity and proliferation assays showed that H19 overexpression could suppress tumor cell survival and proliferation after treatment with either sorafenib or doxorubicin, suggesting chemosensitizing actions of H19. Since HCC displays a highly chemoresistant tumor entity, cell lines resistant to doxorubicin or sorafenib were established. In all six chemoresistant cell lines H19 expression was significantly downregulated. The promoter methylation of the H19 gene was significantly different in chemoresistant cell lines compared to their sensitive counterparts. Chemoresistant cells were sensitized after H19 overexpression by either increasing the cytotoxic action of doxorubicin or decreasing cell proliferation upon sorafenib treatment. An H19 knockout mouse model (H19Δ3) showed increased tumor development and tumor cell proliferation after treatment with the carcinogen diethylnitrosamine (DEN) independent of the reciprocally imprinted insulin-like growth factor 2 (IGF2). In conclusion, H19 suppresses hepatocarcinogenesis, hepatoma cell growth, and HCC chemoresistance. Thus, mimicking H19 action might be a potential target to overcome chemoresistance in future HCC therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...