Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1227656, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701801

RESUMO

Genome-wide prediction is a powerful tool in breeding. Initial results suggest that genome-wide approaches are also promising for enhancing the use of the genebank material: predicting the performance of plant genetic resources can unlock their hidden potential and fill the information gap in genebanks across the world and, hence, underpin prebreeding programs. As a proof of concept, we evaluated the power of across-genebank prediction for extensive germplasm collections relying on historical data on flowering/heading date, plant height, and thousand kernel weight of 9,344 barley (Hordeum vulgare L.) plant genetic resources from the German Federal Ex situ Genebank for Agricultural and Horticultural Crops (IPK) and of 1,089 accessions from the International Center for Agriculture Research in the Dry Areas (ICARDA) genebank. Based on prediction abilities for each trait, three scenarios for predictive characterization were compared: 1) a benchmark scenario, where test and training sets only contain ICARDA accessions, 2) across-genebank predictions using IPK as training and ICARDA as test set, and 3) integrated genebank predictions that include IPK with 30% of ICARDA accessions as a training set to predict the rest of ICARDA accessions. Within the population of ICARDA accessions, prediction abilities were low to moderate, which was presumably caused by a limited number of accessions used to train the model. Interestingly, ICARDA prediction abilities were boosted up to ninefold by using training sets composed of IPK plus 30% of ICARDA accessions. Pervasive genotype × environment interactions (GEIs) can become a potential obstacle to train robust genome-wide prediction models across genebanks. This suggests that the potential adverse effect of GEI on prediction ability was counterbalanced by the augmented training set with certain connectivity to the test set. Therefore, across-genebank predictions hold the promise to improve the curation of the world's genebank collections and contribute significantly to the long-term development of traditional genebanks toward biodigital resource centers.

2.
Front Plant Sci ; 14: 1270298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273944

RESUMO

Globally, wheat (Triticum aestivum L.) is a major source of proteins in human nutrition despite its unbalanced amino acid composition. The low lysine content in the protein fraction of wheat can lead to protein-energy-malnutrition prominently in developing countries. A promising strategy to overcome this problem is to breed varieties which combine high protein content with high lysine content. Nevertheless, this requires the incorporation of yet undefined donor genotypes into pre-breeding programs. Genebank collections are suspected to harbor the needed genetic diversity. In the 1970s, a large-scale screening of protein traits was conducted for the wheat genebank collection in Gatersleben; however, this data has been poorly mined so far. In the present study, a large historical dataset on protein content and lysine content of 4,971 accessions was curated, strictly corrected for outliers as well as for unreplicated data and consolidated as the corresponding adjusted entry means. Four genomic prediction approaches were compared based on the ability to accurately predict the traits of interest. High-quality phenotypic data of 558 accessions was leveraged by engaging the best performing prediction model, namely EG-BLUP. Finally, this publication incorporates predicted phenotypes of 7,651 accessions of the winter wheat collection. Five accessions were proposed as donor genotypes due to the combination of outstanding high protein content as well as lysine content. Further investigation of the passport data suggested an association of the adjusted lysine content with the elevation of the collecting site. This publicly available information can facilitate future pre-breeding activities.

3.
Sci Data ; 9(1): 784, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572688

RESUMO

Plant genetic resources (PGR) stored at genebanks are humanity's crop diversity savings for the future. Information on PGR contrasted with modern cultivars is key to select PGR parents for pre-breeding. Genotyping-by-sequencing was performed for 7,745 winter wheat PGR samples from the German Federal ex situ genebank at IPK Gatersleben and for 325 modern cultivars. Whole-genome shotgun sequencing was carried out for 446 diverse PGR samples and 322 modern cultivars and lines. In 19 field trials, 7,683 PGR and 232 elite cultivars were characterized for resistance to yellow rust - one of the major threats to wheat worldwide. Yield breeding values of 707 PGR were estimated using hybrid crosses with 36 cultivars - an approach that reduces the lack of agronomic adaptation of PGR and provides better estimates of their contribution to yield breeding. Cross-validations support the interoperability between genomic and phenotypic data. The here presented data are a stepping stone to unlock the functional variation of PGR for European pre-breeding and are the basis for future breeding and research activities.


Assuntos
Melhoramento Vegetal , Triticum , Genótipo , Estações do Ano , Triticum/genética
4.
Theor Appl Genet ; 135(12): 4391-4407, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36182979

RESUMO

KEY MESSAGE: Genomic prediction of genebank accessions benefits from the consideration of additive-by-additive epistasis and subpopulation-specific marker effects. Wheat (Triticum aestivum L.) and other species of the Triticum genus are well represented in genebank collections worldwide. The substantial genetic diversity harbored by more than 850,000 accessions can be explored for their potential use in modern plant breeding. Characterization of these large number of accessions is constrained by the required resources, and this fact limits their use so far. This limitation might be overcome by engaging genomic prediction. The present study compared ten different genomic prediction approaches to the prediction of four traits, namely flowering time, plant height, thousand grain weight, and yellow rust resistance, in a diverse set of 7745 accession samples from Germany's Federal ex situ genebank at the Leibniz Institute of Plant Genetics and Crop Plant Research in Gatersleben. Approaches were evaluated based on prediction ability and robustness to the confounding influence of strong population structure. The authors propose the wide application of extended genomic best linear unbiased prediction due to the observed benefit of incorporating additive-by-additive epistasis. General and subpopulation-specific additive ridge regression best linear unbiased prediction, which accounts for subpopulation-specific marker-effects, was shown to be a good option if contrasting clusters are encountered in the analyzed collection. The presented findings reaffirm that the trait's genetic architecture as well as the composition and relatedness of the training set and test set are major driving factors for the accuracy of genomic prediction.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Marcadores Genéticos , Genótipo , Genômica , Fenótipo , Genoma de Planta , Seleção Genética
5.
Nat Genet ; 54(10): 1544-1552, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36195758

RESUMO

The great efforts spent in the maintenance of past diversity in genebanks are rationalized by the potential role of plant genetic resources (PGR) in future crop improvement-a concept whose practical implementation has fallen short of expectations. Here, we implement a genomics-informed prebreeding strategy for wheat improvement that does not discriminate against nonadapted germplasm. We collect and analyze dense genetic profiles for a large winter wheat collection and evaluate grain yield and resistance to yellow rust (YR) in bespoke core sets. Breeders already profit from wild introgressions but PGR still offer useful, yet unused, diversity. Potential donors of resistance sources not yet deployed in breeding were detected, while the prebreeding contribution of PGR to yield was estimated through 'Elite × PGR' F1 crosses. Genomic prediction within and across genebanks identified the best parents to be used in crosses with elite cultivars whose advanced progenies can outyield current wheat varieties in multiple field trials.


Assuntos
Melhoramento Vegetal , Triticum , Genômica , Plantas , Triticum/genética
6.
Sci Data ; 9(1): 538, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056030

RESUMO

In plant sciences, curation and availability of interoperable phenotypic and genomic data is still in its infancy and represents an obstacle to rapid scientific discoveries in this field. To that end, supplementing the efforts being made to generate open access wheat genome, pan wheat genome and other bioinformatic resources, we present the GABI-WHEAT panel of elite European cultivars comprising 358 winter and 14 summer wheat varieties released between 1975 to 2007. The panel has been genotyped with SNP arrays of increasing density to investigate several important agronomic, quality and disease resistance traits. The robustness of investigated traits and interoperability of genomic and phenotypic data was assessed in the current publication with the aim to transform this panel into a public data resource for future genetic research in wheat. Consecutively, the phenotypic data was formatted to comply with FAIR principles and linked to online databases to substantiate panel origin information and quality. Thus, we were able to make a valuable resource available for plant science in a sustainable way.


Assuntos
Triticum , Pesquisa em Genética , Estudo de Associação Genômica Ampla , Genótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/genética
7.
Plant Biotechnol J ; 20(9): 1730-1742, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35562859

RESUMO

A resistance gene atlas is an integral component of the breeder's arsenal in the fight against evolving pathogens. Thanks to high-throughput sequencing, catalogues of resistance genes can be assembled even in crop species with large and polyploid genomes. Here, we report on capture sequencing and assembly of resistance gene homologs in a diversity panel of 907 winter wheat genotypes comprising ex situ genebank accessions and current elite cultivars. In addition, we use accurate long-read sequencing and chromosome conformation capture sequencing to construct a chromosome-scale genome sequence assembly of cv. Attraktion, an elite variety representative of European winter wheat. We illustrate the value of our resource for breeders and geneticists by (i) comparing the resistance gene complements in plant genetic resources and elite varieties and (ii) conducting genome-wide associations scans (GWAS) for the fungal diseases yellow rust and leaf rust using reference-based and reference-free GWAS approaches. The gene content under GWAS peaks was scrutinized in the assembly of cv. Attraktion.


Assuntos
Basidiomycota , Triticum , Basidiomycota/genética , Mapeamento Cromossômico , Cromossomos , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/genética , Triticum/microbiologia
8.
Front Plant Sci ; 13: 836723, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300015

RESUMO

Genetic pathogen control is an economical and sustainable alternative to the use of chemicals. In order to breed resistant varieties, information about potentially unused genetic resistance mechanisms is of high value. We phenotyped 8,316 genotypes of the winter wheat collection of the German Federal ex situ gene bank for Agricultural and Horticultural Crops, Germany, for resistance to powdery mildew (PM), Blumeria graminis f. sp. tritici, one of the most important biotrophic pathogens in wheat. To achieve this, we used a semi-automatic phenotyping facility to perform high-throughput detached leaf assays. This data set, combined with genotyping-by-sequencing (GBS) marker data, was used to perform a genome-wide association study (GWAS). Alleles of significantly associated markers were compared with SNP profiles of 171 widely grown wheat varieties in Germany to identify currently unexploited resistance conferring genes. We also used the Chinese Spring reference genome annotation and various domain prediction algorithms to perform a domain enrichment analysis and produced a list of candidate genes for further investigation. We identified 51 significantly associated regions. In most of these, the susceptible allele was fixed in the tested commonly grown wheat varieties. Eleven of these were located on chromosomes for which no resistance conferring genes have been previously reported. In addition to enrichment of leucine-rich repeats (LRR), we saw enrichment of several domain types so far not reported as relevant to PM resistance, thus, indicating potentially novel candidate genes for the disease resistance research and prebreeding in wheat.

9.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36869695

RESUMO

BACKGROUND: Genebanks worldwide are transforming into biodigital resource centers, providing access not only to the plant material itself but also to its phenotypic and genotypic information. Adding information for relevant traits will help boost plant genetic resources' usage in breeding and research. Resistance traits are vital for adapting our agricultural systems to future challenges. FINDINGS: Here we provide phenotypic data for the resistance against Blumeria graminis f. sp. tritici, the causal agent of wheat powdery mildew-a substantial risk to our agricultural production. Using a modern high-throughput phenotyping system, we infected and photographed a total of 113,638 wheat leaves of 7,320 winter wheat (Triticum aestivum L.) plant genetic resources of the German Federal ex situ Genebank for Agricultural and Horticultural Crops and 154 commercial genotypes. We quantified the resistance reaction captured by images and provide them here, along with the raw images. CONCLUSION: This massive amount of phenotypic data, combined with already published genotypic data, also provides a valuable and unique training dataset for the development of novel genotype-based predictions as well as mapping methods.


Assuntos
Melhoramento Vegetal , Triticum , Agricultura , Produtos Agrícolas , Genótipo
10.
Biology (Basel) ; 10(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34681081

RESUMO

Wheat (Triticum sp.) is one of the world's most important crops, and constantly increasing its productivity is crucial to the livelihoods of millions of people. However, more than a century of intensive breeding and selection processes have eroded genetic diversity in the elite genepool, making new genetic gains difficult. Therefore, the need to introduce novel genetic diversity into modern wheat has become increasingly important. This review provides an overview of the plant genetic resources (PGR) available for wheat. We describe the most important taxonomic and phylogenetic relationships of these PGR to guide their use in wheat breeding. In addition, we present the status of the use of some of these resources in wheat breeding programs. We propose several introgression schemes that allow the transfer of qualitative and quantitative alleles from PGR into elite germplasm. With this in mind, we propose the use of a stage-gate approach to align the pre-breeding with main breeding programs to meet the needs of breeders, farmers, and end-users. Overall, this review provides a clear starting point to guide the introgression of useful alleles over the next decade.

11.
Front Plant Sci ; 12: 689825, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194460

RESUMO

The use of genetic resources in breeding is considered critical to ensure future selection gain, but the absence of important adaptation genes often masks the breeding value of genetic resources for grain yield. Testing genetic resources in a hybrid background has been proposed as a solution to obtain unbiased estimates of breeding values for grain yield. In our study, we evaluated the suitability of European wheat elite lines for implementing this hybrid strategy, focusing on maximizing seed yield in hybrid production and reducing masking effects due to susceptibility to lodging, yellow rust, and leaf rust of genetic resources. Over a 3-year period, 63 wheat elite female lines were crossed with eight male plant genetic resources in a multi-environment field experiment to evaluate seed yield on the female side. Then, the resulting hybrids and their parents were tested for plant height, lodging, and susceptibility to yellow rust and leaf rust in a further field experiment at multiple locations. We found that seed yield was strongly influenced by the elite wheat line choice in addition to environment and observed substantial differences among elite tester lines in their ability to reduce susceptibility to lodging, yellow rust, and leaf rust when the hybrid strategy was implemented. Consequently, breeders can significantly increase the amount of hybrid seed produced in wide crosses through appropriate tester choice and adapt genetic resources of wheat with the hybrid strategy to the modern cropping system.

12.
Sci Adv ; 7(24)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34117061

RESUMO

The potential of big data to support businesses has been demonstrated in financial services, manufacturing, and telecommunications. Here, we report on efforts to enter a new data era in plant breeding by collecting genomic and phenotypic information from 12,858 wheat genotypes representing 6575 single-cross hybrids and 6283 inbred lines that were evaluated in six experimental series for yield in field trials encompassing ~125,000 plots. Integrating data resulted in twofold higher prediction ability compared with cases in which hybrid performance was predicted across individual experimental series. Our results suggest that combining data across breeding programs is a particularly appropriate strategy to exploit the potential of big data for predictive plant breeding. This paradigm shift can contribute to increasing yield and resilience, which is needed to feed the growing world population.

13.
Theor Appl Genet ; 134(7): 2181-2196, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33768281

RESUMO

KEY MESSAGE: Genomic prediction with special weight of major genes is a valuable tool to populate bio-digital resource centers. Phenotypic information of crop genetic resources is a prerequisite for an informed selection that aims to broaden the genetic base of the elite breeding pools. We investigated the potential of genomic prediction based on historical screening data of plant responses against the Barley yellow mosaic viruses for populating the bio-digital resource center of barley. Our study includes dense marker data for 3838 accessions of winter barley, and historical screening data of 1751 accessions for Barley yellow mosaic virus (BaYMV) and of 1771 accessions for Barley mild mosaic virus (BaMMV). Linear mixed models were fitted by considering combinations for the effects of genotypes, years, and locations. The best linear unbiased estimations displayed a broad spectrum of plant responses against BaYMV and BaMMV. Prediction abilities, computed as correlations between predictions and observed phenotypes of accessions, were low for the marker-assisted selection approach amounting to 0.42. In contrast, prediction abilities of genomic best linear unbiased predictions were high, with values of 0.62 for BaYMV and 0.64 for BaMMV. Prediction abilities of genomic prediction were improved by up to ~ 5% using W-BLUP, in which more weight is given to markers with significant major effects found by association mapping. Our results outline the utility of historical screening data and W-BLUP model to predict the performance of the non-phenotyped individuals in genebank collections. The presented strategy can be considered as part of the different approaches used in genebank genomics to valorize genetic resources for their usage in disease resistance breeding and research.


Assuntos
Resistência à Doença/genética , Hordeum/genética , Doenças das Plantas/genética , Potyviridae/patogenicidade , Mapeamento Cromossômico , Bases de Dados Genéticas , Estudos de Associação Genética , Marcadores Genéticos , Variação Genética , Genômica , Genótipo , Hordeum/virologia , Desequilíbrio de Ligação , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/virologia
14.
J Exp Bot ; 71(22): 6958-6968, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32827041

RESUMO

Resistance breeding is crucial for sustainable control of wheat leaf rust and single nucleotide polymorphism (SNP)-based genome-wide association studies (GWAS) are widely used to dissect leaf rust resistance. Unfortunately, GWAS based on SNPs often explained only a small proportion of the genetic variation. We compared SNP-based GWAS with a method based on functional haplotypes (FH) considering epistasis in a comprehensive hybrid wheat mapping population composed of 133 parents plus their 1574 hybrids and characterized with 626 245 high-quality SNPs. In total, 2408 and 1 139 828 significant associations were detected in the mapping population by using SNP-based and FH-based GWAS, respectively. These associations mapped to 25 and 69 candidate regions, correspondingly. SNP-based GWAS highlighted two already-known resistance genes, Lr22a and Lr34-B, while FH-based GWAS detected associations not only on these genes but also on two additional genes, Lr10 and Lr1. As revealed by a second hybrid wheat population for independent validation, the use of detected associations from SNP-based and FH-based GWAS reached predictabilities of 11.72% and 22.86%, respectively. Therefore, FH-based GWAS is not only more powerful for detecting associations, but also improves the accuracy of marker-assisted selection compared with the SNP-based approach.


Assuntos
Basidiomycota , Triticum , Mapeamento Cromossômico , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Haplótipos , Melhoramento Vegetal , Doenças das Plantas/genética , Puccinia , Triticum/genética
15.
PLoS One ; 15(7): e0235565, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32614894

RESUMO

Powdery mildew is an important foliar disease of barley (Hordeum vulgare L.) caused by the biotrophic fungus Blumeria graminis f. sp. hordei (Bgh). The understanding of the resistance mechanism is essential for future resistance breeding. In particular, the identification of race-nonspecific resistance genes is important because of their regarded durability and broad-spectrum activity. We assessed the severity of powdery mildew infection on detached seedling leaves of 267 barley accessions using two poly-virulent isolates and performed a genome-wide association study exploiting 201 of these accessions. Two-hundred and fourteen markers, located on six barley chromosomes are associated with potential race-nonspecific Bgh resistance or susceptibility. Initial steps for the functional validation of four promising candidates were performed based on phenotype and transcription data. Specific candidate alleles were analyzed via transient gene silencing as well as transient overexpression. Microarray data of the four selected candidates indicate differential regulation of the transcription in response to Bgh infection. Based on our results, all four candidate genes seem to be involved in the responses to powdery mildew attack. In particular, the transient overexpression of specific alleles of two candidate genes, a potential arabinogalactan protein and the barley homolog of Arabidopsis thaliana's Light-Response Bric-a-Brac/-Tramtrack/-Broad Complex/-POxvirus and Zinc finger (AtLRB1) or AtLRB2, were top candidates of novel powdery mildew susceptibility genes.


Assuntos
Ascomicetos/genética , Hordeum/genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/microbiologia , Alelos , Ascomicetos/isolamento & purificação , Ascomicetos/patogenicidade , Análise por Conglomerados , Regulação da Expressão Gênica de Plantas , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Desequilíbrio de Ligação , Mucoproteínas/genética , Mucoproteínas/metabolismo , Fenótipo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/genética , Virulência/genética
16.
Front Plant Sci ; 11: 42, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117381

RESUMO

Genebank genomics promises to unlock valuable diversity for plant breeding but first, one key question is which marker system is most suitable to fingerprint entire genebank collections. Using wheat as model species, we tested for the presence of an ascertainment bias and investigated its impact on estimates of genetic diversity and prediction ability obtained using three marker platforms: simple sequence repeat (SSR), genotyping-by-sequencing (GBS), and array-based SNP markers. We used a panel of 378 winter wheat genotypes including 190 elite lines and 188 plant genetic resources (PGR), which were phenotyped in multi-environmental trials for grain yield and plant height. We observed an ascertainment bias for the array-based SNP markers, which led to an underestimation of the molecular diversity within the population of PGR. In contrast, the marker system played only a minor role for the overall picture of the population structure and precision of genome-wide predictions. Interestingly, we found that rare markers contributed substantially to the prediction ability. This combined with the expectation that valuable novel diversity is most likely rare suggests that markers with minor allele frequency deserve careful consideration in the design of a pre-breeding program.

17.
Plant Biotechnol J ; 18(6): 1396-1408, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31782598

RESUMO

Resistance breeding is crucial for a sustainable control of leaf rust (Puccinia triticina) in wheat (Triticum aestivum L.) while directly targeting functional variants is the Holy Grail for efficient marker-assisted selection and map-based cloning. We assessed the limits and prospects of exome association analysis for severity of leaf rust in a large hybrid wheat population of 1574 single-crosses plus their 133 parents. After imputation and quality control, exome sequencing revealed 202 875 single-nucleotide polymorphisms (SNPs) covering 19.7% of the high-confidence annotated gene space. We performed intensive data mining and found significant associations for 2171 SNPs corresponding to 50 different loci. Some of these associations mapped in the proximity of the already known resistance genes Lr21, Lr34-B, Lr1 and Lr10, while other associated genomic regions, such as those on chromosomes 1A and 3D, harboured several annotated genes putatively involved in resistance. Validation with an independent population helped to narrow down the list of putative resistance genes that should be targeted by fine-mapping. We expect that the proposed strategy of intensive data mining coupled with validation will significantly influence research in plant genetics and breeding.


Assuntos
Basidiomycota , Triticum , Cruzamento , Resistência à Doença/genética , Exoma/genética , Genes de Plantas/genética , Humanos , Doenças das Plantas/genética , Triticum/genética
18.
Sci Data ; 6(1): 137, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358775

RESUMO

Genebanks are valuable sources of genetic diversity, which can help to cope with future problems of global food security caused by a continuously growing population, stagnating yields and climate change. However, the scarcity of phenotypic and genotypic characterization of genebank accessions severely restricts their use in plant breeding. To warrant the seed integrity of individual accessions during periodical regeneration cycles in the field phenotypic characterizations are performed. This study provides non-orthogonal historical data of 12,754 spring and winter wheat accessions characterized for flowering time, plant height, and thousand grain weight during 70 years of seed regeneration at the German genebank. Supported by historical weather observations outliers were removed following a previously described quality assessment pipeline. In this way, ready-to-use processed phenotypic data across regeneration years were generated and further validated. We encourage international and national genebanks to increase their efforts to transform into bio-digital resource centers. A first important step could consist in unlocking their historical data treasures that allows an educated choice of accessions by scientists and breeders.


Assuntos
Sementes/genética , Triticum/genética , Conservação dos Recursos Naturais , Produtos Agrícolas/genética , Modelos Estatísticos , Fenótipo , Banco de Sementes , Tempo (Meteorologia)
19.
Sci Data ; 5: 180278, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30512010

RESUMO

The scarce knowledge on phenotypic characterization restricts the usage of genetic diversity of plant genetic resources in research and breeding. We describe original and ready-to-use processed data for approximately 60% of ~22,000 barley accessions hosted at the Federal ex situ Genebank for Agricultural and Horticultural Plant Species. The dataset gathers records for three traits with agronomic relevance: flowering time, plant height and thousand grain weight. This information was collected for seven decades for winter and spring barley during the seed regeneration routine. The curated data represent a source for research on genetics and genomics of adaptive and yield related traits in cereals due to the importance of barley as model organism. This data could be used to predict the performance of non-phenotyped individuals in other collections through genomic prediction. Moreover, the dataset empowers the utilization of phenotypic diversity of genetic resources for crop improvement.


Assuntos
Variação Genética , Hordeum/genética , Variação Biológica da População , Hordeum/crescimento & desenvolvimento , Sementes
20.
Theor Appl Genet ; 131(9): 2009-2019, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29959470

RESUMO

Key message Historical data generated during seed regeneration are valuable to populate a bio-digital resource center for barley (Hordeum sp.). Precise estimates of trait performance of genetic resources are considered as an intellectually challenging, complex, costly and time-consuming step needed to exploit the phenotypic and genetic diversity maintained in genebanks for breeding and research. Using barley (Hordeum sp.) as a model, we examine strategies to tap into historical data available from regeneration trials. This is a first step toward extending the Federal ex situ Genebank into a bio-digital resource center facilitating an informed choice of barley accessions for research and breeding. Our study is based on historical data of seven decades collected for flowering time, plant height, and thousand grain weight during the regeneration of 12,872 spring and winter barley accessions. Linear mixed models were implemented in conjunction with routines for assessment of data quality. A resampling study highlights the potential risk of biased estimates in second-order statistics when grouping accessions for regeneration according to the year of collection or geographic origin. Based on rigorous quality assessment, we obtained high heritability estimates for the traits under consideration exceeding 0.8. Thus, the best linear unbiased estimations for the three traits are a valuable source to populate a bio-digital resource center for the IPK barley collection. The proposed strategy to leverage historical data from regeneration trials is not crop specific and can be used as a blueprint for other ex situ collections.


Assuntos
Variação Genética , Hordeum/genética , Fenótipo , Confiabilidade dos Dados , Bases de Dados Genéticas , Genótipo , Hordeum/crescimento & desenvolvimento , Modelos Lineares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...