Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847395

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra, resulting in motor dysfunction. Current treatments are primarily centered around enhancing dopamine signaling or providing dopamine replacement therapy and face limitations such as reduced efficacy over time and adverse side effects. To address these challenges, we identified selective dopamine receptor subtype 4 (D4R) antagonists not previously reported as potential adjuvants for PD management. In this study, a library screening and artificial neural network quantitative structure-activity relationship (QSAR) modeling with experimentally driven library design resulted in a class of spirocyclic compounds to identify candidate D4R antagonists. However, developing selective D4R antagonists suitable for clinical translation remains a challenge.

2.
ACS Med Chem Lett ; 15(2): 302-309, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38352850

RESUMO

Herein, we report the synthesis and characterization of a novel set of substituted indazole-ethanamines and indazole-tetrahydropyridines as potent serotonin receptor subtype 2 (5-HT2) agonists. Specifically, we examine the 5-HT2 pharmacology of the direct indazole analogs of 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and related serotonergic tryptamines, and highlight the need for rigorous characterization of 5-HT2 subtype selectivity for these analogs, particularly for the 5-HT2B receptor subtype. Within this series, the potent analog VU6067416 (19d) was optimized to have suitable preclinical pharmacokinetic properties for in vivo dosing, although potent 5-HT2B agonist activity precluded further characterization for this series. Additionally, in silico docking studies suggest that the high potency of 19d may be a consequence of a halogen-bonding interaction with Phe2345.38 in the 5-HT2A orthosteric pocket.

3.
SynOpen ; 7(2): 165-185, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37795132

RESUMO

This graphical review provides a concise overview of indole alkaloids and chemical reactions that have been reported to transform both these natural products and derivatives to rapidly access new molecular scaffolds. Select biologically active compounds from these synthetic efforts are reported herein.

4.
Org Biomol Chem ; 21(25): 5181-5184, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37293894

RESUMO

Previously described approaches for the alkylation of NH-sulfoximines typically rely either on transition metal catalysis, or the use of traditional alkylation reagents and strong bases. Herein, we report a straightforward alkylation of diverse NH-sulfoximines under simple Mitsunobu-type conditions, despite the unusually high pKa of the NH center.

5.
Molecules ; 28(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36677735

RESUMO

In the past 25 years, a number of efforts have been made toward the development of small molecule interleukin-6 (IL-6) signaling inhibitors, but none have been approved to date. Monosaccharides are a diverse class of bioactive compounds, but thus far have been unexplored as a scaffold for small molecule IL-6-signaling inhibitor design. Therefore, in this present communication, we combined a structure-based drug design approach with carbohydrate building blocks to design and synthesize novel IL-6-signaling inhibitors targeting glycoprotein 130 (gp130). Of this series of compounds, LS-TG-2P and LS-TF-3P were the top lead compounds, displaying IC50 values of 6.9 and 16 µM against SUM159 cell lines, respectively, while still retaining preferential activity against the IL-6-signaling pathway. The carbohydrate moiety was found to improve activity, as N-unsubstituted triazole analogues of these compounds were found to be less active in vitro compared to the leads themselves. Thus, LS-TG-2P and LS-TF-3P are promising scaffolds for further development and study as IL-6-signaling inhibitors.


Assuntos
Antineoplásicos , Interleucina-6 , Antineoplásicos/farmacologia , Carboidratos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Interleucina-6/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Transdução de Sinais , Relação Estrutura-Atividade , Humanos
6.
Bioorg Med Chem ; 73: 116986, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208545

RESUMO

Inhibitors of gamma-glutamyl transpeptidase (GGT1, aka gamma-glutamyl transferase) are needed for the treatment of cancer, cardiovascular illness and other diseases. Compounds that inhibit GGT1 have been evaluated in the clinic, but no inhibitor has successfully demonstrated specific and systemic GGT1 inhibition. All have severe side effects. L-2-amino-4­boronobutanoic acid (l-ABBA), a glutamate analog, is the most potent GGT1 inhibitor in vitro. In this study, we have solved the crystal structure of human GGT1 (hGGT1) with ABBA bound in the active site. The structure was interrogated to identify interactions between the enzyme and the inhibitor. Based on these data, a series of novel ABBA analogs were designed and synthesized. Their inhibitory activity against the hydrolysis and transpeptidation activities of hGGT1 were determined. The lead compounds were crystalized with hGGT1 and the structures solved. The kinetic data and structures of the complexes provide new insights into the critical role of protein structure dynamics in developing compounds for inhibition of hGGT1.


Assuntos
Compostos de Boro , gama-Glutamiltransferase , Domínio Catalítico , Ácido Glutâmico , Humanos , gama-Glutamiltransferase/metabolismo
7.
J Immunol Methods ; 359(1-2): 47-55, 2010 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-20540945

RESUMO

Progress has been slow in defining molecular requirements for human B lymphopoiesis in part because of differences from experimental animals and also because of the lack of culture conditions that efficiently support the process. We recently found that human CD10+ lymphocytes were produced when CD34+ hematopoietic stem and progenitor cells were cultured in contact with human mesenchymal stem cells (hMSC). Further investigation revealed that it occurred even when progenitors were separated from hMSC by membrane filters. Experiments with neutralizing antibodies suggested that important heat labile factors produced by hMSC are unlikely to be IL-7, TSLP, CXCL12 or hemokinin-1. Further manipulation of culture conditions revealed that optimal lymphopoiesis required careful selection of fetal calf serum lots, maintenance of high cell densities, as well as recombinant cytokines (SCF, FL and G-CSF). G-CSF was particularly important when adult bone marrow rather than umbilical cord blood derived CD34+ cells were used to initiate the cultures. These improved methods should facilitate identification of molecules that can be used to speed regeneration of the humoral immune system following chemotherapy and might suggest ways to inhibit growth of B lineage malignancies.


Assuntos
Linfócitos B/citologia , Técnicas de Cocultura/métodos , Meios de Cultivo Condicionados/química , Linfopoese , Animais , Linfócitos B/imunologia , Separação Celular , Células Cultivadas , Citometria de Fluxo , Humanos , Camundongos , Camundongos SCID , Células Estromais , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...