Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 10(2): 207-16, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21910820

RESUMO

Heavy metal accumulation in the environment poses great risks to flora and fauna. However, monitoring sites prone to accumulation poses scale and economic challenges. In this study, we present and test a method for monitoring these sites using fluorescent resonance energy transfer (FRET) change in response to zinc (Zn) accumulation in plants as a proxy for environmental health. We modified a plant Zn transport protein by adding flanking fluorescent proteins (FPs) and deploying the construct into two different species. In Arabidopsis thaliana, FRET was monitored by a confocal microscope and had a 1.4-fold increase in intensity as the metal concentration increased. This led to a 16.7% overall error-rate when discriminating between a control (1µm Zn) and high (10mm Zn) treatment after 96h. The second host plant (Populus tremula×Populu salba) also had greater FRET values (1.3-fold increase) when exposed to the higher concentration of Zn, while overall error-rates were greater at 22.4%. These results indicate that as plants accumulate Zn, protein conformational changes occur in response to Zn causing differing interaction between FPs. This results in greater FRET values when exposed to greater amounts of Zn and monitored with appropriate light sources and filters. We also demonstrate how this construct can be moved into different host plants effectively including one tree species. This chimeric protein potentially offers a method for monitoring large areas of land for Zn accumulation, is transferable among species, and could be modified to monitor other specific heavy metals that pose environmental risks.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas de Transporte de Cátions/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Plantas/metabolismo , Poluentes do Solo/análise , Zinco/análise , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Monitoramento Ambiental/métodos , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Proteínas de Plantas/química , Proteínas de Plantas/genética , Populus/química , Populus/genética , Populus/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Poluentes do Solo/farmacocinética , Zinco/farmacocinética
2.
J Exp Bot ; 62(11): 3737-52, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21504875

RESUMO

Perennial woody species, such as poplar (Populus spp.) must acquire necessary heavy metals like zinc (Zn) while avoiding potential toxicity. Poplar contains genes with sequence homology to genes HMA4 and PCS1 from other species which are involved in heavy metal regulation. While basic genomic conservation exists, poplar does not have a hyperaccumulating phenotype. Poplar has a common indicator phenotype in which heavy metal accumulation is proportional to environmental concentrations but excesses are prevented. Phenotype is partly affected by regulation of HMA4 and PCS1 transcriptional abundance. Wild-type poplar down-regulates several transcripts in its Zn-interacting pathway at high Zn levels. Also, overexpressed PtHMA4 and PtPCS1 genes result in varying Zn phenotypes in poplar; specifically, there is a doubling of Zn accumulation in leaf tissues in an overexpressed PtPCS1 line. The genomic complement and regulation of poplar highlighted in this study supports a role of HMA4 and PCS1 in Zn regulation dictating its phenotype. These genes can be altered in poplar to change its interaction with Zn. However, other poplar genes in the surrounding pathway may maintain the phenotype by inhibiting drastic changes in heavy metal accumulation with a single gene transformation.


Assuntos
Adenosina Trifosfatases/metabolismo , Aminoaciltransferases/metabolismo , Proteínas de Plantas/metabolismo , Populus/genética , Zinco/metabolismo , Adenosina Trifosfatases/genética , Aminoaciltransferases/genética , Genótipo , Homeostase , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Populus/enzimologia , Populus/crescimento & desenvolvimento , Populus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...