Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Integr Environ Assess Manag ; 8(1): 42-63, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21538836

RESUMO

In the regulatory context, bioaccumulation assessment is often hampered by substantial data uncertainty as well as by the poorly understood differences often observed between results from laboratory and field bioaccumulation studies. Bioaccumulation is a complex, multifaceted process, which calls for accurate error analysis. Yet, attempts to quantify and compare propagation of error in bioaccumulation metrics across species and chemicals are rare. Here, we quantitatively assessed the combined influence of physicochemical, physiological, ecological, and environmental parameters known to affect bioaccumulation for 4 species and 2 chemicals, to assess whether uncertainty in these factors can explain the observed differences among laboratory and field studies. The organisms evaluated in simulations including mayfly larvae, deposit-feeding polychaetes, yellow perch, and little owl represented a range of ecological conditions and biotransformation capacity. The chemicals, pyrene and the polychlorinated biphenyl congener PCB-153, represented medium and highly hydrophobic chemicals with different susceptibilities to biotransformation. An existing state of the art probabilistic bioaccumulation model was improved by accounting for bioavailability and absorption efficiency limitations, due to the presence of black carbon in sediment, and was used for probabilistic modeling of variability and propagation of error. Results showed that at lower trophic levels (mayfly and polychaete), variability in bioaccumulation was mainly driven by sediment exposure, sediment composition and chemical partitioning to sediment components, which was in turn dominated by the influence of black carbon. At higher trophic levels (yellow perch and the little owl), food web structure (i.e., diet composition and abundance) and chemical concentration in the diet became more important particularly for the most persistent compound, PCB-153. These results suggest that variation in bioaccumulation assessment is reduced most by improved identification of food sources as well as by accounting for the chemical bioavailability in food components. Improvements in the accuracy of aqueous exposure appear to be less relevant when applied to moderate to highly hydrophobic compounds, because this route contributes only marginally to total uptake. The determination of chemical bioavailability and the increase in understanding and qualifying the role of sediment components (black carbon, labile organic matter, and the like) on chemical absorption efficiencies has been identified as a key next steps.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Poluentes Ambientais/toxicidade , Medição de Risco/métodos , Animais , Simulação por Computador , Poluentes Ambientais/metabolismo , Insetos/efeitos dos fármacos , Insetos/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Modelos Biológicos , Percas/metabolismo , Poliquetos/efeitos dos fármacos , Poliquetos/metabolismo , Bifenilos Policlorados/análise , Bifenilos Policlorados/metabolismo , Bifenilos Policlorados/toxicidade , Pirenos/análise , Pirenos/metabolismo , Pirenos/toxicidade , Sensibilidade e Especificidade , Especificidade da Espécie , Estrigiformes/metabolismo , Incerteza
2.
Mar Environ Res ; 66(1): 47-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18397801

RESUMO

We exposed sexually maturing male rainbow trout (Oncorhynchus mykiss) to BDE-47 (a polybrominated diphenyl ether) and female rainbow trout to trenbolone (an anabolic steroid). Male trout were orally exposed for 17 days to 55 microg/kg/day BDE-47 and female trout continuously exposed for 60-77 days to a measured trenbolone water concentration of 35 ng/L. After the exposure, eggs and semen were collected and in vitro fertilization trials performed using a sperm:egg ratio of 300,000:1. In the BDE-47 study, eggs from control females were fertilized with semen from exposed males, while in the trenbolone study, eggs from exposed females were fertilized with semen from control males. All treatments were evaluated at two-three early developmental time-points representing first cleavage (0.5 day), embryonic keel (9 days), and eyed stages (19 days), respectively. The results indicated that BDE-47 exposure did not alter fertility as embryonic survival was similar between control and exposed groups. Trenbolone exposure also did not alter embryo survival. However, in the embryos fertilized with eggs from trenbolone exposed females, a noticeable delay in developmental progress was observed. On day 19 when eye development is normally complete, the majority of the embryos either lacked eyes or displayed under-developed eyes, in contrast to control embryos. This finding suggests steroidal androgen exposure in sexually maturing female rainbow trout can impact developmental timing of F1 offspring.


Assuntos
Fertilidade/efeitos dos fármacos , Exposição Materna/efeitos adversos , Oncorhynchus mykiss/fisiologia , Exposição Paterna/efeitos adversos , Bifenil Polibromatos/toxicidade , Acetato de Trembolona/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados , Masculino , Análise de Sobrevida
3.
Toxicology ; 245(1-2): 35-48, 2008 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-18242812

RESUMO

Dichloroacetic acid is a common disinfection by-product in surface waters and is a probable minor metabolite of trichloroethylene. Dichloroacetic acid (DCA) liver carcinogenicity has been demonstrated in rodents but epidemiological evidence in humans is not available. High doses of DCA ( approximately 50mg/kg) are used clinically to treat metabolic acidosis. Biotransformation of DCA by glutathione transferase zeta (GSTzeta) in the liver is the major elimination pathway in humans. GSTzeta is also inactivated by DCA, leading to slower systemic clearance and nonlinear pharmacokinetics after multiple doses. A physiologically based pharmacokinetic (PBPK) model was developed to quantitatively describe DCA biotransformation and kinetics in humans administered DCA by intravenous infusion and oral ingestion. GSTzeta metabolism was described using a Michaelis-Menten equation coupled with rate constants to account for normal GSTzeta synthesis, degradation and irreversible covalent binding and inhibition by the glutathione-bound-DCA intermediate. With some departures between observation and model prediction, the human DCA PBPK model adequately predicted the DCA plasma kinetics over a 20,000-fold range in administered doses. Apparent inhibition of GSTzeta mediated metabolism of DCA was minimal for low doses of DCA (microg/kg day), but was significant for therapeutic doses of DCA. Plasma protein binding of DCA was assumed to be an important factor influencing the kinetics of low doses of DCA (microg/kg day). Polymorphisms of GSTzeta may help explain inter-individual variability in DCA plasma kinetics and warrants evaluation. In conclusion, using a previously published rodent DCA PBPK model (Keys, D.A., Schultz, I.R., Mahle, D.A., Fisher, J.W., 2004. A quantitative description of suicide inhibition of dichloroacetic acid in rats and mice. Toxicol. Sci. 82, 381-393) and this human DCA PBPK model, human equivalent doses (HEDs) were calculated for a 10% increase in mice hepatic liver cancer (2.1mg/kg day). The HEDs for the dosimetrics, area-under-the-concentration-curve (AUC) for total and free DCA in plasma, AUC of DCA in liver and amount of DCA metabolized per day were 0.02, 0.1, 0.1 and 1.0mg/kg day, respectively. Research on the mechanism of action of DCA and the relevance of mouse liver cancer is needed to better understand which dosimetric may be appropriate for extrapolation from animal studies to human.


Assuntos
Ácido Dicloroacético/farmacocinética , Modelos Biológicos , Poluentes Químicos da Água/farmacocinética , Administração Oral , Biotransformação , Ácido Dicloroacético/sangue , Ácido Dicloroacético/toxicidade , Feminino , Humanos , Infusões Intravenosas , Masculino , Neoplasias/induzido quimicamente , Valor Preditivo dos Testes , Risco , Poluentes Químicos da Água/sangue , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...