Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732996

RESUMO

X-ray nanotomography is a powerful tool for the characterization of nanoscale materials and structures, but it is difficult to implement due to the competing requirements of X-ray flux and spot size. Due to this constraint, state-of-the-art nanotomography is predominantly performed at large synchrotron facilities. We present a laboratory-scale nanotomography instrument that achieves nanoscale spatial resolution while addressing the limitations of conventional tomography tools. The instrument combines the electron beam of a scanning electron microscope (SEM) with the precise, broadband X-ray detection of a superconducting transition-edge sensor (TES) microcalorimeter. The electron beam generates a highly focused X-ray spot on a metal target held micrometers away from the sample of interest, while the TES spectrometer isolates target photons with a high signal-to-noise ratio. This combination of a focused X-ray spot, energy-resolved X-ray detection, and unique system geometry enables nanoscale, element-specific X-ray imaging in a compact footprint. The proof of concept for this approach to X-ray nanotomography is demonstrated by imaging 160 nm features in three dimensions in six layers of a Cu-SiO2 integrated circuit, and a path toward finer resolution and enhanced imaging capabilities is discussed.

2.
J Phys Condens Matter ; 27(7): 075801, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25634829

RESUMO

Based on defect energy levels computed from first-principles calculations, it is shown the E1-E2 center in irradiated GaAs cannot be due to an isolated arsenic vacancy. The only simple intrinsic defect with levels compatible with E1 and E2 is the divacancy. The arsenic monovacancy is reassigned to the E3 center in irradiated GaAs. These new assignments are shown to reconcile a number of seemingly contradictory experimental observations.

3.
Environ Health Perspect ; 121(1): 15-22, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23033457

RESUMO

BACKGROUND: Older adults make up 13% of the U.S. population, but are projected to account for 20% by 2040. Coinciding with this demographic shift, the rate of climate change is accelerating, bringing rising temperatures; increased risk of floods, droughts, and wildfires; stronger tropical storms and hurricanes; rising sea levels; and other climate-related hazards. Older Americans are expected to be located in places that may be relatively more affected by climate change, including coastal zones and large metropolitan areas. OBJECTIVE: The objective of this review is to assess the vulnerability of older Americans to climate change and to identify opportunities for adaptation. METHODS: We performed an extensive literature survey and summarized key findings related to demographics; climate stressors relevant to older adults; factors contributing to exposure, sensitivity, and adaptive capacity; and adaptation strategies. DISCUSSION: A range of physiological and socioeconomic factors make older adults especially sensitive to and/or at risk for exposure to heat waves and other extreme weather events (e.g., hurricanes, floods, droughts), poor air quality, and infectious diseases. Climate change may increase the frequency or severity of these events. CONCLUSIONS: Older Americans are likely to be especially vulnerable to stressors associated with climate change. Although a growing body of evidence reports the adverse effects of heat on the health of older adults, research gaps remain for other climate-related risks. We need additional study of the vulnerability of older adults and the interplay of vulnerability, resilience, and adaptive responses to projected climate stressors.


Assuntos
Mudança Climática , Idoso , Idoso de 80 Anos ou mais , Humanos , Medição de Risco , Fatores Socioeconômicos , Estados Unidos
4.
J Chem Phys ; 136(20): 204117, 2012 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-22667550

RESUMO

The Heyd-Scuseria-Ernzerhof (HSE) density functionals are popular for their ability to improve upon the accuracy of standard semilocal functionals such as Perdew-Burke-Ernzerhof (PBE), particularly for semiconductor band gaps. They also have a reduced computational cost compared to hybrid functionals, which results from the restriction of Fock exchange calculations to small inter-electron separations. These functionals are defined by an overall fraction of Fock exchange and a length scale for exchange screening. We systematically examine this two-parameter space to assess the performance of hybrid screened exchange (sX) functionals and to determine a balance between improving accuracy and reducing the screening length, which can further reduce computational costs. Three parameter choices emerge as useful: "sX-PBE" is an approximation to the sX-LDA screened exchange density functionals based on the local density approximation (LDA); "HSE12" minimizes the overall error over all tests performed; and "HSE12s" is a range-minimized functional that matches the overall accuracy of the existing HSE06 parameterization but reduces the Fock exchange length scale by half. Analysis of the error trends over parameter space produces useful guidance for future improvement of density functionals.

5.
Phys Rev Lett ; 106(20): 206402, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21668246

RESUMO

We show that oxygen vacancies are not necessary for the formation of E' centers in amorphous SiO2 and that a single O deficiency can lead to two charge traps. Employing molecular dynamics with a reactive potential and density functional theory, we generate an ensemble of stoichiometric and oxygen-deficient amorphous SiO2 atomic structures and identify low-energy network defects. Three-coordinated Si atoms appear in several low-energy defects both in stoichiometric and O-deficient samples where, in addition to the neutral oxygen vacancy, they appear as isolated defects.

6.
J Chem Phys ; 132(2): 024108, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20095664

RESUMO

The lack of adequately predictive atomistic empirical models precludes meaningful simulations for many materials systems. We describe advances in the development of a hybrid, population based optimization strategy intended for the automated development of material specific interatomic potentials. We compare two strategies for parallel genetic programming and show that the Hierarchical Fair Competition algorithm produces better results in terms of transferability, despite a lower training set accuracy. We evaluate the use of hybrid local search and several fitness models using system energies and/or particle forces. We demonstrate a drastic reduction in the computation time with the use of a correlation-based fitness statistic. We show that the problem difficulty increases with the number of atoms present in the systems used for model development and demonstrate that vectorization can help to address this issue. Finally, we show that with the use of this method, we are able to "rediscover" the exact model for simple known two- and three-body interatomic potentials using only the system energies and particle forces from the supplied atomic configurations.

7.
Phys Rev Lett ; 96(24): 246401, 2006 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-16907259

RESUMO

Quantitative predictions of defect properties in semiconductors using density functional theory have been crippled by two issues: the supercell approximation, which has incorrect boundary conditions for an isolated defect, and approximate functionals, that drastically underestimate the band gap. I describe modifications to the supercell method that incorporate boundary conditions appropriate to point defects, identify a common electron reservoir for net charge for all defects, deal with defect banding, and incorporate bulk polarization. The computed level spectrum for an extended set of silicon defects spans the experimental gap, i.e., exhibits no band gap problem, and agrees remarkably well with experiment.

8.
J Am Chem Soc ; 128(11): 3659-68, 2006 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-16536538

RESUMO

We apply density functional theory (DFT) and the DFT+U technique to study the adsorption of transition metal porphine molecules on atomistically flat Au(111) surfaces. DFT calculations using the Perdew-Burke-Ernzerhof exchange correlation functional correctly predict the palladium porphine (PdP) low-spin ground state. PdP is found to adsorb preferentially on gold in a flat geometry, not in an edgewise geometry, in qualitative agreement with experiments on substituted porphyrins. It exhibits no covalent bonding to Au(111), and the binding energy is a small fraction of an electronvolt. The DFT+U technique, parametrized to B3LYP-predicted spin state ordering of the Mn d-electrons, is found to be crucial for reproducing the correct magnetic moment and geometry of the isolated manganese porphine (MnP) molecule. Adsorption of Mn(II)P on Au(111) substantially alters the Mn ion spin state. Its interaction with the gold substrate is stronger and more site-specific than that of PdP. The binding can be partially reversed by applying an electric potential, which leads to significant changes in the electronic and magnetic properties of adsorbed MnP and approximately 0.1 A changes in the Mn-nitrogen distances within the porphine macrocycle. We conjecture that this DFT+U approach may be a useful general method for modeling first-row transition metal ion complexes in a condensed-matter setting.

9.
Langmuir ; 21(26): 12404-14, 2005 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-16343021

RESUMO

We report the structures and energies from first principles density functional calculations of 12 different reconstructed (111) surfaces of silicon, including the 3x3 to 9x9 dimer-adatom-stacking fault (DAS) structures. These calculations used the Perdew-Burke-Ernzerhof generalized gradient approximation of density functional theory and Gaussian basis functions. We considered fully periodic slabs of various thicknesses. We find that the most stable surface is the DAS 7x7 structure, with a surface energy of 1.044 eV/1x1 cell (1310 dyn/cm). To analyze the origins of the stability of these systems and to predict energetics for more complex, less-ordered systems, we develop a model in which the surface energy is partitioned into contributions from seven different types of atom environments. This analysis is used to predict the surface energy of larger DAS structures (including their asymptotic behavior for very large unit cells) and to study the energetics of the sequential size change (SSC) model proposed by Shimada and Tochihara for the observed dynamical reconstruction of the Si(111) 1x1 structure. We obtain an energy barrier at the 2x2 cell size and confirm that the 7x7 regular stage of the SSC model (corresponding to the DAS 7x7 reconstruction) provides the highest energy reduction per unit cell with respect to the unreconstructed Si111 1x1 surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...