Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Internet Res ; 18(11): e278, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27829576

RESUMO

BACKGROUND: Until a few years ago, Web-based computer-tailored interventions were almost exclusively delivered via computer (eHealth). However, nowadays, interventions delivered via mobile phones (mHealth) are an interesting alternative for health promotion, as they may more easily reach people 24/7. OBJECTIVE: The first aim of this study was to compare the efficacy of an mHealth and an eHealth version of a Web-based computer-tailored physical activity intervention with a control group. The second aim was to assess potential differences in use and appreciation between the 2 versions. METHODS: We collected data among 373 Dutch adults at 5 points in time (baseline, after 1 week, after 2 weeks, after 3 weeks, and after 6 months). We recruited participants from a Dutch online research panel and randomly assigned them to 1 of 3 conditions: eHealth (n=138), mHealth (n=108), or control condition (n=127). All participants were asked to complete questionnaires at the 5 points in time. Participants in the eHealth and mHealth group received fully automated tailored feedback messages about their current level of physical activity. Furthermore, they received personal feedback aimed at increasing their amount of physical activity when needed. We used analysis of variance and linear regression analyses to examine differences between the 2 study groups and the control group with regard to efficacy, use, and appreciation. RESULTS: Participants receiving feedback messages (eHealth and mHealth together) were significantly more physically active after 6 months than participants in the control group (B=8.48, df=2, P=.03, Cohen d=0.27). We found a small effect size favoring the eHealth condition over the control group (B=6.13, df=2, P=.09, Cohen d=0.21). The eHealth condition had lower dropout rates (117/138, 84.8%) than the mHealth condition (81/108, 75.0%) and the control group (91/127, 71.7%). Furthermore, in terms of usability and appreciation, the eHealth condition outperformed the mHealth condition with regard to participants receiving (t182=3.07, P=.002) and reading the feedback messages (t181=2.34, P=.02), as well as the clarity of the messages (t181=1.99, P=.049). CONCLUSIONS: We tested 2 Web-based computer-tailored physical activity intervention versions (mHealth and eHealth) against a control condition with regard to efficacy, use, usability, and appreciation. The overall effect was mainly caused by the more effective eHealth intervention. The mHealth app was rated inferior to the eHealth version with regard to usability and appreciation. More research is needed to assess how both methods can complement each other. TRIAL REGISTRATION: Netherlands Trial Register: NTR4503; http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=4503 (Archived by WebCite at http://www.webcitation.org/6lEi1x40s).


Assuntos
Exercício Físico , Promoção da Saúde/métodos , Internet/estatística & dados numéricos , Telemedicina/métodos , Adulto , Feminino , Humanos , Masculino , Países Baixos , Inquéritos e Questionários
2.
J Med Internet Res ; 17(10): e228, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26446779

RESUMO

BACKGROUND: Web-based computer-tailored interventions have shown to be effective in improving health behavior; however, high dropout attrition is a major issue in these interventions. OBJECTIVE: The aim of this study is to assess whether people with a lower educational level drop out from studies more frequently compared to people with a higher educational level and to what extent this depends on evaluation of these interventions. METHODS: Data from 7 randomized controlled trials of Web-based computer-tailored interventions were used to investigate dropout rates among participants with different educational levels. To be able to compare higher and lower educated participants, intervention evaluation was assessed by pooling data from these studies. Logistic regression analysis was used to assess whether intervention evaluation predicted dropout at follow-up measurements. RESULTS: In 3 studies, we found a higher study dropout attrition rate among participants with a lower educational level, whereas in 2 studies we found that middle educated participants had a higher dropout attrition rate compared to highly educated participants. In 4 studies, no such significant difference was found. Three of 7 studies showed that participants with a lower or middle educational level evaluated the interventions significantly better than highly educated participants ("Alcohol-Everything within the Limit": F2,376=5.97, P=.003; "My Healthy Behavior": F2,359=5.52, P=.004; "Master Your Breath": F2,317=3.17, P=.04). One study found lower intervention evaluation by lower educated participants compared to participants with a middle educational level ("Weight in Balance": F2,37=3.17, P=.05). Low evaluation of the interventions was not a significant predictor of dropout at a later follow-up measurement in any of the studies. CONCLUSIONS: Dropout attrition rates were higher among participants with a lower or middle educational level compared with highly educated participants. Although lower educated participants evaluated the interventions better in approximately half of the studies, evaluation did not predict dropout attrition. Further research is needed to find other explanations for high dropout rates among lower educated participants.


Assuntos
Computadores/estatística & dados numéricos , Internet/estatística & dados numéricos , Educação de Pacientes como Assunto/estatística & dados numéricos , Adulto , Feminino , Comportamentos Relacionados com a Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...