Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 22(12): 1095-101, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22608508

RESUMO

Life cycle adaptation to latitudinal and seasonal variation in photoperiod and temperature is a major determinant of evolutionary success in flowering plants. Whereas the life cycle of the dicotyledonous model species Arabidopsis thaliana is controlled by two epistatic genes, FLOWERING LOCUS C and FRIGIDA, three unrelated loci (VERNALIZATION) determine the spring and winter habits of monocotyledonous plants such as temperate cereals. In the core eudicot species Beta vulgaris, whose lineage diverged from that leading to Arabidopsis shortly after the monocot-dicot split 140 million years ago, the bolting locus B is a master switch distinguishing annuals from biennials. Here, we isolated B and show that the pseudo-response regulator gene BOLTING TIME CONTROL 1 (BvBTC1), through regulation of the FLOWERING LOCUS T genes, is absolutely necessary for flowering and mediates the response to both long days and vernalization. Our results suggest that domestication of beets involved the selection of a rare partial loss-of-function BvBTC1 allele that imparts reduced sensitivity to photoperiod that is restored by vernalization, thus conferring bienniality, and illustrate how evolutionary plasticity at a key regulatory point can enable new life cycle strategies.


Assuntos
Adaptação Biológica/fisiologia , Agricultura/métodos , Beta vulgaris/fisiologia , Evolução Biológica , Flores/fisiologia , Genes Reguladores/genética , Proteínas de Plantas/genética , Adaptação Biológica/genética , Sequência de Aminoácidos , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Sequência de Bases , Beta vulgaris/genética , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Clonagem Molecular , Primers do DNA/genética , Flores/genética , Marcadores Genéticos/genética , Haplótipos/genética , Immunoblotting , Modelos Biológicos , Dados de Sequência Molecular , Fenótipo , Fotoperíodo , Filogenia , Estações do Ano , Seleção Genética , Alinhamento de Sequência , Análise de Sequência de DNA
2.
J Exp Bot ; 62(10): 3359-74, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20974738

RESUMO

The transition from vegetative growth to reproductive development is a complex process that requires an integrated response to multiple environmental cues and endogenous signals. In Arabidopsis thaliana, which has a facultative requirement for vernalization and long days, the genes of the autonomous pathway function as floral promoters by repressing the central repressor and vernalization-regulatory gene FLC. Environmental regulation by seasonal changes in daylength is under control of the photoperiod pathway and its key gene CO. The root and leaf crop species Beta vulgaris in the caryophyllid clade of core eudicots, which is only very distantly related to Arabidopsis, is an obligate long-day plant and includes forms with or without vernalization requirement. FLC and CO homologues with related functions in beet have been identified, but the presence of autonomous pathway genes which function in parallel to the vernalization and photoperiod pathways has not yet been reported. Here, this begins to be addressed by the identification and genetic mapping of full-length homologues of the RNA-regulatory gene FLK and the chromatin-regulatory genes FVE, LD, and LDL1. When overexpressed in A. thaliana, BvFLK accelerates bolting in the Col-0 background and fully complements the late-bolting phenotype of an flk mutant through repression of FLC. In contrast, complementation analysis of BvFVE1 and the presence of a putative paralogue in beet suggest evolutionary divergence of FVE homologues. It is further shown that BvFVE1, unlike FVE in Arabidopsis, is under circadian clock control. Together, the data provide first evidence for evolutionary conservation of components of the autonomous pathway in B. vulgaris, while also suggesting divergence or subfunctionalization of one gene. The results are likely to be of broader relevance because B. vulgaris expands the spectrum of evolutionarily diverse species which are subject to differential developmental and/or environmental regulation of floral transition.


Assuntos
Beta vulgaris/metabolismo , Biologia Computacional/métodos , Flores/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Beta vulgaris/genética , Cromossomos Artificiais Bacterianos , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Teste de Complementação Genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
AoB Plants ; 2010: plq012, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22476070

RESUMO

BACKGROUND AND AIMS: Bolting, the first visible sign of reproductive transition in beets (Beta vulgaris), is controlled by the dominant bolting gene B (B allele), which allows for flowering under long days (LDs, >14 h light) without prior vernalization. The B-locus carries recessive alleles (bb) in sugar beet (Beta vulgaris L. spp. vulgaris), so that vernalization and LDs are required for bolting and flowering. Gibberellin growth hormones (GAs) control stem elongation and reproductive development, but their role during these processes in sugar beet is not defined. We aimed to investigate the involvement of GAs in bolting and flowering in sugar beet, and also its relationship with the vernalization requirement as defined by the B-gene. METHODOLOGY: Plants segregating for the B allele were treated with exogenous GA(4) under inductive (16 h light) and non-inductive (8 h light) photoperiods, with and without prior vernalization treatment. A co-dominant polymerase chain reaction (PCR) marker was used to genotype the B-gene locus. Bolting and flowering dates were scored, and bolt heights were measured as appropriate. Analysis of variance was used to determine the effects and interactions of GAs, the B allele and vernalization on bolting and flowering. The effects of the B allele on bolting were also verified in the field. PRINCIPAL RESULTS: Application of GAs or the B allele could initiate bolting independently. When the B allele was absent, the applied GAs promoted stem growth, but did so only in vernalized plants, irrespective of photoperiod. Under LDs, bolt height before flowering in plants carrying the B allele (BB; Bb) was not significantly influenced by GAs. The timing and frequency of flowering were influenced by the B allele without interactive effects from GAs. CONCLUSIONS: In sugar beet, GA acts independently of the B allele and photoperiod to induce bolting. Vernalization enables GA action independently of the B allele; hence, the dominant B allele may not directly participate in vernalization-induced bolting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...