Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetica ; 148(5-6): 215-228, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33070222

RESUMO

The process of hybridization between closely related species plays an important role in defining the genetic integrity and overall genetic diversity of species. The distribution range of Magellanic (Spheniscus magellanicus) and Humboldt (Spheniscus humboldti) penguins is predominantly allopatric; however, the species share a region of sympatry where they may hybridize. We analyzed four types of genetic markers (including nuclear and mitochondrial markers) to assess their utility in detecting hybridization events between Magellanic and Humboldt penguins. Genetic assessment of non-introgressed reference samples allowed us to identify three types of informative markers (microsatellites, major histocompatibility complex, and mitochondrial DNA) and detect positive evidence of introgressive hybridization in the wild. Four out of six putative hybrids showed positive evidence of hybridization, revealed by the detection of Humboldt mitochondrial DNA and Magellanic species-specific alleles from nuclear markers. Bayesian Structure analysis, including samples from the sympatric region of the species in the southern Pacific Ocean, confirmed the use of nuclear markers for detecting hybridization and genetic admixture of putative hybrids, but revealed relatively low levels of genetic introgression at the population level. These findings provide insights into the role of hybridization in regions of species sympatry and its potential consequences on the levels of genetic introgression, genetic diversity, and conservation of these penguin species.


Assuntos
Introgressão Genética , Spheniscidae/genética , Animais , DNA Mitocondrial/genética , Ecossistema , Genes MHC Classe I , Repetições de Microssatélites , Spheniscidae/fisiologia
2.
PLoS One ; 15(1): e0226439, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31910443

RESUMO

Although many studies have documented the effects of demographic bottlenecks on the genetic diversity of natural populations, there is conflicting evidence of the roles that genetic drift and selection may play in driving changes in genetic variation at adaptive loci. We analyzed genetic variation at microsatellite and mitochondrial loci in conjunction with an adaptive MHC class II locus in the Galápagos penguin (Spheniscus mendiculus), a species that has undergone serial demographic bottlenecks associated with El Niño events through its evolutionary history. We compared levels of variation in the Galápagos penguin to those of its congener, the Magellanic penguin (Spheniscus magellanicus), which has consistently maintained a large population size and thus was used as a non-bottlenecked control. The comparison of neutral and adaptive markers in these two demographically distinct species allowed assessment of the potential role of balancing selection in maintaining levels of MHC variation during bottleneck events. Our analysis suggests that the lack of genetic diversity at both neutral and adaptive loci in the Galápagos penguin likely resulted from its restricted range, relatively low abundance, and history of demographic bottlenecks. The Galápagos penguin revealed two MHC alleles, one mitochondrial haplotype, and six alleles across five microsatellite loci, which represents only a small fraction of the diversity detected in Magellanic penguins. Despite the decreased genetic diversity in the Galápagos penguin, results revealed signals of balancing selection at the MHC, which suggest that selection can mitigate some of the effects of genetic drift during bottleneck events. Although Galápagos penguin populations have persisted for a long time, increased frequency of El Niño events due to global climate change, as well as the low diversity exhibited at immunological loci, may put this species at further risk of extinction.


Assuntos
Deriva Genética , Variação Genética , Genética Populacional , Antígenos de Histocompatibilidade Classe II/genética , Seleção Genética , Spheniscidae/genética , Animais , DNA Mitocondrial/genética , Demografia , Evolução Molecular , Genótipo , Repetições de Microssatélites , Spheniscidae/classificação
3.
Am J Bot ; 101(8): 1259-74, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25104551

RESUMO

UNLABELLED: • PREMISE OF THE STUDY: Given the worldwide economic importance of maize endosperm, it is surprising that its development is not the most comprehensively studied of the cereals. We present detailed morphometric and cytological descriptions of endosperm development in the maize inbred line B73, for which the genome has been sequenced, and compare its growth with four diverse Nested Association Mapping (NAM) founder lines.• METHODS: The first 12 d of B73 endosperm development were described using semithin sections of plastic-embedded kernels and confocal microscopy. Longitudinal sections were used to compare endosperm length, thickness, and area.• KEY RESULTS: Morphometric comparison between Arizona- and Michigan-grown B73 showed a common pattern. Early endosperm development was divided into four stages: coenocytic, cellularization through alveolation, cellularization through partitioning, and differentiation. We observed tightly synchronous nuclear divisions in the coenocyte, elucidated that the onset of cellularization was coincident with endosperm size, and identified a previously undefined cell type (basal intermediate zone, BIZ). NAM founders with small mature kernels had larger endosperms (0-6 d after pollination) than lines with large mature kernels.• CONCLUSIONS: Our B73-specific model of early endosperm growth links developmental events to relative endosperm size, while accounting for diverse growing conditions. Maize endosperm cellularizes through alveolation, then random partitioning of the central vacuole. This unique cellularization feature of maize contrasts with the smaller endosperms of Arabidopsis, barley, and rice that strictly cellularize through repeated alveolation. NAM analysis revealed differences in endosperm size during early development, which potentially relates to differences in timing of cellularization across diverse lines of maize.


Assuntos
Diferenciação Celular , Endosperma/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Endosperma/anatomia & histologia , Endosperma/citologia , Fertilização , Células Vegetais , Polinização , Especificidade da Espécie , Zea mays/anatomia & histologia , Zea mays/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...