Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14204, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648704

RESUMO

Space travel requires high-powered, efficient rocket propulsion systems for controllable launch vehicles and safe planetary entry. Interplanetary travel will rely on energy-dense propellants to produce thrust via combustion as the heat generation process to convert chemical to thermal energy. In propulsion devices, combustion can occur through deflagration or detonation, each having vastly different characteristics. Deflagration is subsonic burning at effectively constant pressure and is the main means of thermal energy generation in modern rockets. Alternatively, detonation is a supersonic combustion-driven shock offering several advantages. Detonations entail compact heat release zones at elevated local pressure and temperature. Specifically, rotating detonation rocket engines (RDREs) use detonation as the primary means of energy conversion, producing more useful available work compared to equivalent deflagration-based devices; detonation-based combustion is poised to radically improve rocket performance compared to today's constant pressure engines, producing up to 10[Formula: see text] increased thrust. This new propulsion cycle will also reduce thruster size and/or weight, lower injection pressures, and are less susceptible to engine-damaging acoustic instabilities. Here we present a collective effort to benchmark performance and standardize operability of rotating detonation rocket engines to develop the RDRE technology readiness level towards a flight demonstration. Key detonation physics unique to RDREs, driving consistency and control of chamber dynamics across the engine operating envelope, are identified and addressed to drive down the variability and stochasticity observed in previous studies. This effort demonstrates an RDRE operating consistently across multiple facilities, validating this technology's performance as the foundation of RDRE architecture for future aerospace applications.

2.
Appl Opt ; 61(9): 2192-2197, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35333233

RESUMO

A 100 kHz krypton (Kr) tagging velocimetry (KTV) technique was demonstrated in a Mach-6 Ludwieg tube using a burst-mode laser-pumped optical parametric oscillator system. The single-beam KTV scheme at 212 nm produced an insufficient signal in this large hypersonic wind tunnel because of its low Kr seeding (≤5%), low static pressure (∼2.5torr), and long working distance (∼1m). To overcome these issues, a new scheme using two excitation beams was developed to enhance KTV performance. A 355 nm laser beam was combined with the 212 nm beam to promote efficient two-photon Kr excitation at 212 nm, and increase the probability of 2 + 1 resonant-enhanced multiphoton ionization by adding a 355 nm beam. A signal enhancement of approximately six times was obtained. Using this two-excitation beam approach, strong long-lasting KTV was successfully demonstrated at a 100 kHz repetition rate in a Mach-6 flow.

3.
Opt Express ; 29(13): 21011-21019, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34266176

RESUMO

Rotationally resolved, broadband absorption spectra of the fundamental vibrational transition of the asymmetric C-H stretch mode of methane are measured under single-laser-shot conditions using time-resolved optically gated absorption (TOGA). The TOGA approach exploits the difference in timescales between a broadband, fs-duration excitation source and the ps-duration absorption features induced by molecular absorption to allow effective suppression of the broadband background spectrum, thereby allowing for sensitive detection of multi-transition molecular spectra. This work extends the TOGA approach into the mid-infrared (mid-IR) spectral regime, allowing access to fundamental vibrational transitions while providing broadband access to multiple mid-IR transitions spanning ∼150 cm-1 (∼160 nm) near 3.3 µm, thereby highlighting the robustness of this technique beyond previously demonstrated electronic spectroscopy. Measurements are conducted in a heated gas cell to determine the accuracy of the simultaneous temperature and species-concentration measurements afforded by this single-shot approach in a well-characterized environment. Application of this approach toward fuel-rich methane-nitrogen-oxygen flames is also demonstrated.

4.
Appl Opt ; 60(15): C32-C37, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34143103

RESUMO

Multiphoton-resonance enhancement of a rare-gas-assisted nitrogen femtosecond-laser electronic-excitation-tagging (FLEET) signal is demonstrated. The FLEET signal is ideal for velocimetric tracking of nitrogen gas in flow environments by virtue of its long-lived nature. By tuning to three-photon-resonant transitions of argon, energy can be more efficiently deposited into the mixture, thereby producing a stronger and longer-lived FLEET signal following subsequent efficient energy transfer from excited-state argon to the C (3Πu) excited state of nitrogen. Such resonant excitation exhibits as much as an order of magnitude increase in this rare-gas-assisted FLEET signal, compared to near-resonance excitation of seeded argon demonstrated in previous work, while reducing the required input excitation-pulse energies by two orders of magnitude compared to traditional FLEET.

5.
Appl Opt ; 60(6): 1615-1622, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33690497

RESUMO

Krypton (Kr)-based tagging velocimetry is demonstrated in a Kr/N2 jet at 100 kHz repetition rate using a custom-built burst-mode laser and optical parametric oscillator (OPO) system. At this repetition rate, the wavelength-tunable, narrow linewidth laser platform can generate up to 7 mJ/pulse at resonant Kr two-photon-excitation wavelengths. Following a comprehensive study, we have identified the 212.56 nm two-photon-excitation transition as ideal for efficient Kr-based velocimetry, producing a long-lived (∼40µs) fluorescence signal from single-laser-pulse tagging that is readily amenable to velocity tracking without the need for a second "read" laser pulse. This long-lived fluorescence signal is found to emanate from N2-rather than from Kr-following efficient energy transfer. Successful flow velocity tracking is demonstrated at multiple locations in a high-speed Kr/N2 jet flow. The 100 kHz repetition rate provides the ability to perform time-resolved velocimetry measurements in high-speed and even hypersonic flow environments, where standard velocimetry approaches are insufficient to capture the relevant dynamics.

6.
Opt Lett ; 45(14): 3832-3835, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32667296

RESUMO

Krypton planar laser-induced fluorescence (Kr PLIF) was demonstrated at a repetition rate of 100 kHz. To achieve this increased rate, a custom injection-seeded optical parametric oscillator was built to efficiently convert the 355 nm output of a high-energy, high-repetition-rate nanosecond burst-mode laser to 212.56 nm to excite Kr from the ground to the 5p[1/2]0 electronic state. Successful tracking of flow structures and mixture fraction was demonstrated using detection speeds 100 times greater than previously attained with a femtosecond laser source. The increase in repetition rate makes time-resolved Kr PLIF relevant for high-speed flows in particular.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...