Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 244: 120534, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659177

RESUMO

The removal of micropollutants from wastewater by constructed wetlands (CWs) has been extensively studied and reviewed over the past years. However, most studies do not specifically focus on the removal of micropollutants from the effluent of conventional wastewater treatment plants (WWTP) that still contains micropollutants, but on the removal of micropollutants from raw wastewater. Raw wastewater has a significantly different composition compared to WWTP effluent, which positively or negatively affects micropollutant removal mechanisms. To determine the optimal CW design for post-treatment of WWTP effluent to achieve additional micropollutant removal, this review analyzes the removal of 16 Dutch indicator micropollutants for post-treatment technology evaluation from WWTP effluent by different types of CWs. It was concluded that CW systems with organic enhanced adsorption substrates reach the highest micropollutant removal efficiency as a result of adsorption, but that the longevity of the enhanced adsorption effect is not known in the systems studied until now. Aerobic biodegradation and photodegradation are other relevant removal mechanisms for the studied micropollutants. However, a current knowledge gap is whether active aeration to stimulate the aerobic micropollutant biodegradation results in an increased micropollutant removal from WWTP effluent. Further knowledge gaps that impede the wider application of CW systems for micropollutant removal from WWTP effluent and allow a fair comparison with other post-treatment technologies for enhanced micropollutant removal, such as ozonation and activated carbon adsorption, relate to i) saturation of enhanced adsorption substrate; ii) the analysis of transformation products and biological effects; iii) insights in the relationship between microbial community composition and micropollutant biodegradation; iv) plant uptake and in-plant degradation of micropollutants; v) establishing design rules for appropriate hydraulic loading rates and/or hydraulic retention times for CWs dedicated to micropollutant removal from WWTP effluent; and vi) the energy- and carbon footprint of different CW systems. This review finishes with detailed suggestions for future research directions that provide answers to these knowledge gaps.


Assuntos
Águas Residuárias , Áreas Alagadas , Adsorção , Biodegradação Ambiental , Transporte Biológico
3.
Water Sci Technol ; 79(12): 2242-2250, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31411578

RESUMO

In vitro methods were used to assess the full potential for decomposition (measured as biogas formation) from pit latrine samples taken from the top layer of 15 Tanzanian latrines. We found considerable variability in the decomposition rate and extent. This was compared with decomposition in the same latrines, measured by comparing top layer composition with fresh stools and deeper (older) layers, to assess whether this potential was realised in situ. Results showed a close match between the extent of organic material breakdown in situ and in vitro, indicating that anaerobic digestion is the dominant pathway in latrines. The average potential decrease in chemical oxygen demand (COD) (determined as methane production in vitro within 60 days) and actual measured decrease in situ are 68.9% ± 11.3 and 69.7% ± 19.4, respectively. However in the in vitro tests, where samples were diluted in water, full decomposition was achieved in 2 months, whereas in situ it can take years; this suggests that water addition may offer a simple route to improving latrine performance. The results also allowed us to estimate, for the first time to our knowledge using experimental data, the contribution that latrines make to greenhouse gas emissions globally. This amounts to ∼2% of annual US emissions.


Assuntos
Fator Intrínseco , Banheiros , Eliminação de Resíduos Líquidos , Anaerobiose , Fezes , Metano , Água
4.
Environ Technol ; 36(9-12): 1223-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25401272

RESUMO

Anaerobic digestion of manure is a widely accepted technology for energy production. However, only a minimal portion of the manure production in the EU is anaerobically digested and occurs predominantly in codigestion plants. There is substantial potential for biogas plants that primarily operate on manure (>90%); however, the methane yields of manure are less compared to coproducts, which is one of the reasons for manure-based biogas plants often being economically non-viable. Therefore, it is essential to begin increasing the efficiency of these biogas plants. This study investigated the effect of decreasing retention time and introducing a moderate amount of glycerin on the biogas production as methods to improve efficiency. An experiment has been conducted with two different manure types in four biogas reactors. The results of the study demonstrated that, first, it was possible to decrease the retention time to 10-15 days; however, the effect on biogas production varied per manure type. Secondly, the biogas production almost triples at a retention time of 15.6 days with an addition of 4% glycerin. The relative production-enhancing effect of glycerin did not vary significantly with both manure types. However, the absolute production-enhancing effect of glycerin differed per manure type since the biogas production per gram VS differed per manure type. Thirdly, the positive effect of the glycerin input declines with shorter retention times. Therefore, the effect of glycerin addition depends on the manure type and retention time.


Assuntos
Biocombustíveis , Reatores Biológicos , Glicerol , Esterco , Gerenciamento de Resíduos/métodos , Anaerobiose , Animais , Bovinos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...