Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0295081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38032889

RESUMO

In stone tool studies, the analysis of different technological and typological features is known to provide distinct but interrelated information on the design and use of artefacts. The selection of these features can potentially influence the understanding and reconstruction of past human technological behaviour across time. One feature frequently part of a standard lithic analysis is the measurement of edge angles. The angle of an edge, unmodified or shaped by retouch and an integral part of the overall tool design, is certainly a parameter that influences the interpretation of an artefact. The acuteness of an edge angle is often linked to aspects such as cutting, carving, or scraping efficiency and durability and thus, tool performance. Knowing the actual edge angle of a stone tool can therefore have important implications for its interpretation. In the case of edge angle analyses, manual measuring techniques have been established for many years in lithic studies. Here, we introduce a new method for accurate and precise edge angle measurements based on 3D data (hereafter 3D-EdgeAngle). 3D-EdgeAngle consists of a script-based, semi-automated edge angle measuring method applicable to 3D models. Unlike other methods, 3D-EdgeAngle illustrates an objective way of measuring the edge angle at cross sections along the entire tool edge in defined steps and, moreover, allows measurements at different distances perpendicular to the edge by controlling three involved parameters. Thus, with this method, the edge angle can be measured at any point in a high resolution and scale of analysis. Compared to measurements taken manually, with this method random and systematic errors can be reduced significantly. Additionally, all data are reproducible and statistically evaluable. We introduce 3D-EdgeAngle as a standard method to calculate edge angles with a highly accurate and systematic approach. With this method, we aim to improve the process of studying lithics and thus to increase the understanding of past human tool design.

2.
Sci Rep ; 9(1): 6313, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-31004088

RESUMO

Many archeologists are skeptical about the capabilities of use-wear analysis to infer on the function of archeological tools, mainly because the method is seen as subjective, not standardized and not reproducible. Quantitative methods in particular have been developed and applied to address these issues. However, the importance of equipment, acquisition and analysis settings remains underestimated. One of those settings, the numerical aperture of the objective, has the potential to be one of the major factors leading to reproducibility issues. Here, experimental flint and quartzite tools were imaged using laser-scanning confocal microscopy with two objectives having the same magnification but different numerical apertures. The results demonstrate that 3D surface texture ISO 25178 parameters differ significantly when the same surface is measured with objectives having different numerical apertures. It is, however, unknown whether this property would blur or mask information related to use of the tools. Other acquisition and analyses settings are also discussed. We argue that to move use-wear analysis toward standardization, repeatability and reproducibility, the first step is to report all acquisition and analysis settings. This will allow the reproduction of use-wear studies, as well as tracing the differences between studies to given settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...