Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 244: 116120, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38547650

RESUMO

Charge heterogeneity is inherent to all therapeutic antibodies and arises from post-translational modifications (PTMs) and/or protein degradation events that may occur during manufacturing. Among therapeutic antibodies, the bispecific antibody (bsAb) containing two unique Fab arms directed against two different targets presents an additional layer of complexity to the charge profile. In the context of a bsAb, a single domain-specific PTM within one of the Fab domains may be sufficient to compromise target binding and could potentially impact the stability, safety, potency, and efficacy of the drug product. Therefore, characterization and routine monitoring of domain-specific modifications is critical to ensure the quality of therapeutic bispecific antibody products. We developed a Digestion-assisted imaged Capillary isoElectric focusing (DiCE) method to detect and quantitate domain-specific charge variants of therapeutic bispecific antibodies (bsAbs). The method involves enzymatic digestion using immunoglobulin G (IgG)-degrading enzyme of S. pyogenes (IdeS) to generate F(ab)2 and Fc fragments, followed by imaged capillary isoelectric focusing (icIEF) under reduced, denaturing conditions to separate the light chains (LCs) from the Fd domains. Our results suggest that DiCE is a highly sensitive method that is capable of quantitating domain-specific PTMs of a bsAb. In one case study, DiCE was used to quantitate unprocessed C-terminal lysine and site-specific glycation of Lys98 in the complementarity-determining region (CDR) of a bsAb that could not be accurately quantitated using conventional, platform-based charge variant analysis, such as intact icIEF. Quantitation of these PTMs by DiCE was comparable to results from peptide mapping, demonstrating that DiCE is a valuable orthogonal method for ensuring product quality. This method may also have potential applications for characterizing fusion proteins, antibody-drug conjugates, and co-formulated antibody cocktails.


Assuntos
Anticorpos Biespecíficos , Focalização Isoelétrica , Processamento de Proteína Pós-Traducional , Anticorpos Biespecíficos/imunologia , Focalização Isoelétrica/métodos , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/química , Humanos , Imunoglobulina G/imunologia , Fragmentos Fc das Imunoglobulinas/química
2.
MAbs ; 9(6): 985-995, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28590151

RESUMO

Herein we describe the investigation of a Chinese hamster ovary (CHO)-expressed human mAb molecule found partially modified by a +80 Da adduct. This mass difference, suggestive of a single sulfation or phosphorylation addition, was observed by mass analysis of the intact and reduced molecule by mass spectrometry (MS). The modification was located on tyrosine 31 (Y31) of the light chain in the complementarity-determining region 1 by liquid chromatography (LC)-MS peptide mapping and electron transfer dissociation fragmentation. The complete loss of the 80 Da modification moiety during collision induced dissociation fragmentation suggested this modification could not be a tyrosine phosphorylation. Treatment of the mAb with alkaline phosphatase confirmed our hypothesis. Western blot experiment using anti-tyrosine sulfation antibody and LC retention time correlation with corresponding synthetic sulfated peptides further confirmed the identification of tyrosine sulfation on the light chain. The unique sequence motif with neighboring acidic amino acids and local secondary structure might play a role to make Y31 a substrate residue for sulfation. This type of modification, to our knowledge, has not been previously reported for CHO-produced human IgG antibodies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...