Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 129(7): 1319-28, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26869224

RESUMO

TPX2 is a widely conserved microtubule-associated protein that is required for mitotic spindle formation and function. Previous studies have demonstrated that TPX2 is required for the nucleation of microtubules around chromosomes; however, the molecular mechanism by which TPX2 promotes microtubule nucleation remains a mystery. In this study, we found that TPX2 acts to suppress tubulin subunit off-rates during microtubule assembly and disassembly, thus allowing for the support of unprecedentedly slow rates of plus-end microtubule growth, and also leading to a dramatically reduced microtubule shortening rate. These changes in microtubule dynamics can be explained in computational simulations by a moderate increase in tubulin-tubulin bond strength upon TPX2 association with the microtubule lattice, which in turn acts to reduce the departure rate of tubulin subunits from the microtubule ends. Thus, the direct suppression of tubulin subunit off-rates by TPX2 during microtubule growth and shortening could provide a molecular mechanism to explain the nucleation of new microtubules in the presence of TPX2.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitose/fisiologia , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Linhagem Celular , Células Sf9 , Spodoptera
2.
Dev Cell ; 31(1): 61-72, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25313961

RESUMO

During cell division, a microtubule-based mitotic spindle mediates the faithful segregation of duplicated chromosomes into daughter cells. Proper length control of the metaphase mitotic spindle is critical to this process and is thought to be achieved through a mechanism in which spindle pole separation forces from plus-end-directed motors are balanced by forces from minus-end-directed motors that pull spindle poles together. However, in contrast to this model, metaphase mitotic spindles with inactive kinesin-14 minus-end-directed motors often have shorter spindle lengths, along with poorly aligned spindle microtubules. A mechanistic explanation for this paradox is unknown. Using computational modeling, in vitro reconstitution, live-cell fluorescence microscopy, and electron microscopy, we now find that the budding yeast kinesin-14 molecular motor Kar3-Cik1 can efficiently align spindle microtubules along the spindle axis. This then allows plus-end-directed kinesin-5 motors to efficiently exert the outward microtubule sliding forces needed for proper spindle bipolarity.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Proteínas dos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/ultraestrutura
3.
J Cell Biol ; 205(3): 313-24, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24821839

RESUMO

During cell division, a mitotic spindle is built by the cell and acts to align and stretch duplicated sister chromosomes before their ultimate segregation into daughter cells. Stretching of the pericentromeric chromatin during metaphase is thought to generate a tension-based signal that promotes proper chromosome segregation. However, it is not known whether the mitotic spindle actively maintains a set point tension magnitude for properly attached sister chromosomes to facilitate robust mechanochemical checkpoint signaling. By imaging and tracking the thermal movements of pericentromeric fluorescent markers in Saccharomyces cerevisiae, we measured pericentromere stiffness and then used the stiffness measurements to quantitatively evaluate the tension generated by pericentromere stretch during metaphase in wild-type cells and in mutants with disrupted chromosome structure. We found that pericentromere tension in yeast is substantial (4-6 pN) and is tightly self-regulated by the mitotic spindle: through adjustments in spindle structure, the cell maintains wild-type tension magnitudes even when pericentromere stiffness is disrupted.


Assuntos
Centrômero/fisiologia , Mecanotransdução Celular , Metáfase , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fuso Acromático/fisiologia , Simulação por Computador , Elasticidade , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
4.
Mol Biol Cell ; 24(17): 2753-63, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23825022

RESUMO

How subunit dosage contributes to the assembly and function of multimeric complexes is an important question with implications in understanding biochemical, evolutionary, and disease mechanisms. Toward identifying pathways that are susceptible to decreased gene dosage, we performed a genome-wide screen for haploinsufficient (HI) genes that guard against genome instability in Saccharomyces cerevisiae. This led to the identification of all three genes (SPC97, SPC98, and TUB4) encoding the evolutionarily conserved γ-tubulin small complex (γ-TuSC), which nucleates microtubule assembly. We found that hemizygous γ-TuSC mutants exhibit higher rates of chromosome loss and increases in anaphase spindle length and elongation velocities. Fluorescence microscopy, fluorescence recovery after photobleaching, electron tomography, and model convolution simulation of spc98/+ mutants revealed improper regulation of interpolar (iMT) and kinetochore (kMT) microtubules in anaphase. The underlying cause is likely due to reduced levels of Tub4, as overexpression of TUB4 suppressed the spindle and chromosome segregation defects in spc98/+ mutants. We propose that γ-TuSC is crucial for balanced assembly between iMTs and kMTs for spindle organization and accurate chromosome segregation. Taken together, the results show how gene dosage studies provide critical insights into the assembly and function of multisubunit complexes that may not be revealed by using traditional studies with haploid gene deletion or conditional alleles.


Assuntos
Instabilidade Genômica , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Tubulina (Proteína)/metabolismo , Segregação de Cromossomos , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Dosagem de Genes , Haploinsuficiência , Humanos , Proteínas Associadas aos Microtúbulos/genética , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Fuso Acromático/fisiologia , Tubulina (Proteína)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...