Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(11): 6893-6901, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38591632

RESUMO

BACKGROUND: Gluten composition is an important quality parameter of wheat flour. Reversed-phase high-performance liquid chromatography (RP-HPLC) is a state-of-the-art method for its analysis. As this is a very labour-intensive and time-consuming procedure, alternative faster methods are desirable. Enzyme-linked immunosorbent assay (ELISA) is a high-throughput method often used for the analysis of gluten traces in gluten-free products. In this proof-of-principle study, we introduce an experimental triple ELISA for the relative quantitation of gliadins, high-molecular-weight glutenin subunits (HMW-GS) and low-molecular-weight glutenin subunits (LMW-GS) of one wheat flour extract. RESULTS: The results of 80 common wheat flour samples obtained from the triple ELISA and RP-HPLC were correlated. The results for gliadins (r = 0.69) and HMW-GS (r = 0.81) showed a medium and high correlation, respectively. Only a very weak correlation of ELISA and RP-HPLC results was observed for LMW-GS (r = 0.49). Results for glutenins (r = 0.69) and gluten (r = 0.72) had a medium correlation. The gliadin/glutenin ratio (r = 0.47) and LMW-GS/HMW-GS ratio (r = 0.40) showed a weak or no correlation. The gliadin, LMW-GS and gluten contents were lower and the HMW-GS content was higher in the ELISA measurement compared to RP-HPLC. CONCLUSION: The quantitation of gliadins and HMW-GS by the experimental triple ELISA showed comparable results to RP-HPLC, whereas no strong correlation between the results from the two methods was found for LMW-GS. Overall, the experimental triple ELISA is suitable for relative gluten quantitation, especially for the analysis of large sample sets. Further work will focus on improving the experimental procedure of the ELISA. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Ensaio de Imunoadsorção Enzimática , Farinha , Gliadina , Glutens , Triticum , Glutens/análise , Triticum/química , Ensaio de Imunoadsorção Enzimática/métodos , Farinha/análise , Gliadina/análise , Gliadina/química , Cromatografia Líquida de Alta Pressão/métodos , Peso Molecular
2.
J Texture Stud ; 54(6): 926-935, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37605805

RESUMO

A comprehensive in-situ analysis of the developing gluten network during kneading is still a gap in cereal science. With an in-line microscale shear kneading and measuring setup in a conventional rheometer, a first step was taken in previous works toward fully comprehensible gluten network development evaluation. In this work, this setup was extended by an in-situ optical analysis of the evolving gluten network. By connecting a laser scanning microscope with a conventional rheometer, the evaluation of the rheological and optical protein network evolution was possible. An image processing tool for analyzing the protein network was applied for evaluating the gluten network development in a wheat dough during the shear kneading process. This network evaluation was possible without interruption or invasive sample transfer comparing it to former approaches. The shear kneading system was able to produce a fully developed dough matrix within 125% of the reference dough development time in a classical kneader. The calculated network connectivity values from frequency testing ranged over all samples was in good agreement with traditional kneaded wheat dough just over peak consistency.


Assuntos
Farinha , Glutens , Farinha/análise , Microscopia Confocal , Triticum , Reologia
3.
Curr Res Food Sci ; 6: 100471, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935851

RESUMO

Gluten composition is an important quality parameter for wheat flour, because it is strongly correlated to baking quality. Wheat proteins are commonly extracted stepwise and analysed using RP-HPLC-UV to determine the gluten composition. This procedure is very time-consuming and labour-intensive. Therefore, a new, fast and easy method to quantitate gluten proteins was established using NIR spectroscopy (NIRS). PLS-regression models were calculated containing 207 samples for calibration and 169 for test set validation. Albumin/globulin (ALGL), gluten, gliadin and glutenin content was predicted with a root mean square error of prediction (RMSEP) of 2.01 mg/g, 6.09 mg/g, 4.25 mg/g and 3.50 mg/g, respectively. High-molecular-weight glutenin subunits (HMW-GS) and low-molecular-weight glutenin subunits (LMW-GS) were predicted with a RMSEP of 1.12 mg/g and 2.38 mg/g. The relative error was too high for ALGL, LMW-GS and HMW-GS, but that of gluten, gliadins and glutenins was in a range comparable to the reference method. Therefore, the new NIRS method can be used to estimate the gluten composition of wheat flour, including the gliadin/glutenin and the LMW-GS/HMW-GS ratio.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...