Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Front Mol Neurosci ; 15: 988993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353360

RESUMO

Mowat-Wilson syndrome (MWS) is a severe neurodevelopmental disorder caused by heterozygous variants in the gene encoding transcription factor ZEB2. Affected individuals present with structural brain abnormalities, speech delay and epilepsy. In mice, conditional loss of Zeb2 causes hippocampal degeneration, altered migration and differentiation of GABAergic interneurons, a heterogeneous population of mainly inhibitory neurons of importance for maintaining normal excitability. To get insights into GABAergic development and function in MWS we investigated ZEB2 haploinsufficient induced pluripotent stem cells (iPSC) of MWS subjects together with iPSC of healthy donors. Analysis of RNA-sequencing data at two time points of GABAergic development revealed an attenuated interneuronal identity in MWS subject derived iPSC with enrichment of differentially expressed genes required for transcriptional regulation, cell fate transition and forebrain patterning. The ZEB2 haploinsufficient neural stem cells (NSCs) showed downregulation of genes required for ventral telencephalon specification, such as FOXG1, accompanied by an impaired migratory capacity. Further differentiation into GABAergic interneuronal cells uncovered upregulation of transcription factors promoting pallial and excitatory neurons whereas cortical markers were downregulated. The differentially expressed genes formed a neural protein-protein network with extensive connections to well-established epilepsy genes. Analysis of electrophysiological properties in ZEB2 haploinsufficient GABAergic cells revealed overt perturbations manifested as impaired firing of repeated action potentials. Our iPSC model of ZEB2 haploinsufficient GABAergic development thus uncovers a dysregulated gene network leading to immature interneurons with mixed identity and altered electrophysiological properties, suggesting mechanisms contributing to the neuropathogenesis and seizures in MWS.

3.
Stem Cell Res ; 60: 102712, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35203050

RESUMO

Dravet syndrome is an early onset devastating epilepsy syndrome usually caused by heterozygous mutations in SCN1A. We generated a human iPSC line (UUIGPi015-A) from dermal fibroblasts of a patient with Dravet syndrome carrying a deletion on chromosome 2 encompassing SCN1A and 9 flanking genes. Characterization of the iPSC line confirmed expression of pluripotency markers, tri-lineage differentiation capacity and absence of exogenous reprogramming factors. The iPSC line retained the deletion and was genomically stable. The iPSC line UUIGPi015-A provides a useful resource for studies on the pathophysiology of Dravet syndrome and seizures caused by haploinsufficiency of SCN1A and flanking gene products.


Assuntos
Epilepsias Mioclônicas , Células-Tronco Pluripotentes Induzidas , Cromossomos Humanos Par 2 , Epilepsias Mioclônicas/genética , Síndromes Epilépticas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Espasmos Infantis
4.
Stem Cell Res ; 57: 102577, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34688129

RESUMO

Heterozygous variants in POLR2A, encoding the largest subunit of RNA polymerase II, cause severe neurodevelopmental and multisystem abnormalities in humans. Using CRISPR/Cas9 we generated the human iPSC line KICRi002A-5 with a heterozygous truncating 4 bp insertion in exon 5 of the POLR2A gene. Analysis using qRT-PCR confirmed reduced POLR2A mRNA in KICRi002A-5 vs. the isogenic WT iPSC line. The edited iPSC line expressed pluripotency markers and exhibited differentiation capacity into the three germ layers. Assessment of genomic integrity revealed a normal karyotype and OFF-target editing was excluded. The iPSC line KICRi002A-5 provides a useful resource to study mechanisms underlying developmental defects caused by RBP1 insufficiency.

5.
J Agric Food Chem ; 69(38): 11382-11394, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34533305

RESUMO

Aromatized wines and regular table wines are often filled on the same bottling line. Sealing polymers in the filling line absorb volatiles from aromatized wines and may migrate due to insufficient cleaning into the subsequently bottled regular wine. Unintentional carryover of volatiles may lead to accusation of illegal aromatization of wine. Absorption, cleaning efficacy, and migration of volatiles into ethylene propylene diene monomer rubber were investigated in a model system. Direct thermal desorption-gas chromatography-mass spectrometry analysis of seven aroma compounds monitored variation in the polymer (µg/g). Absorption of volatiles was mostly driven by their octanol/water partition coefficients. Cleaning of polymers removed 11 to 62% of the absorbed volatiles. Subsequent immersion of cleaned polymers into model wine revealed migration of 20 to 57% of the remaining volatiles. Sensory tests suggested the impact of transferred volatiles into subsequent model wine. For α-ionone, an odor activity value of 1.03 indicated a potential sensory impact.


Assuntos
Compostos Orgânicos Voláteis , Vinho , Alcenos , Etilenos , Odorantes/análise , Polímeros , Borracha , Compostos Orgânicos Voláteis/análise , Vinho/análise
6.
Commun Biol ; 4(1): 624, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035432

RESUMO

Combined measurements of mRNA and protein expression in single cells enable in-depth analysis of cellular states. We present SPARC, an approach that combines single-cell RNA-sequencing with proximity extension essays to simultaneously measure global mRNA and 89 intracellular proteins in individual cells. We show that mRNA expression fails to accurately reflect protein abundance at the time of measurement, although the direction of changes is in agreement during neuronal differentiation. Moreover, protein levels of transcription factors better predict their downstream effects than do their corresponding transcripts. Finally, we highlight that protein expression variation is overall lower than mRNA variation, but relative protein variation does not reflect the mRNA level. Our results demonstrate that mRNA and protein measurements in single cells provide different and complementary information regarding cell states. SPARC presents a state-of-the-art co-profiling method that overcomes current limitations in throughput and protein localization, including removing the need for cell fixation.


Assuntos
Perfilação da Expressão Gênica/métodos , Proteômica/métodos , Análise de Célula Única/métodos , Humanos , Proteínas/genética , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA/métodos , Transcrição Gênica/genética
7.
Am J Hum Genet ; 108(4): 739-748, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33711248

RESUMO

Neurochondrin (NCDN) is a cytoplasmatic neural protein of importance for neural growth, glutamate receptor (mGluR) signaling, and synaptic plasticity. Conditional loss of Ncdn in mice neural tissue causes depressive-like behaviors, impaired spatial learning, and epileptic seizures. We report on NCDN missense variants in six affected individuals with variable degrees of developmental delay, intellectual disability (ID), and seizures. Three siblings were found homozygous for a NCDN missense variant, whereas another three unrelated individuals carried different de novo missense variants in NCDN. We assayed the missense variants for their capability to rescue impaired neurite formation in human neuroblastoma (SH-SY5Y) cells depleted of NCDN. Overexpression of wild-type NCDN rescued the neurite-phenotype in contrast to expression of NCDN containing the variants of affected individuals. Two missense variants, associated with severe neurodevelopmental features and epilepsy, were unable to restore mGluR5-induced ERK phosphorylation. Electrophysiological analysis of SH-SY5Y cells depleted of NCDN exhibited altered membrane potential and impaired action potentials at repolarization, suggesting NCDN to be required for normal biophysical properties. Using available transcriptome data from human fetal cortex, we show that NCDN is highly expressed in maturing excitatory neurons. In combination, our data provide evidence that bi-allelic and de novo variants in NCDN cause a clinically variable form of neurodevelopmental delay and epilepsy, highlighting a critical role for NCDN in human brain development.


Assuntos
Alelos , Epilepsia/genética , Deficiência Intelectual/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Sequência de Bases , Linhagem Celular , Pré-Escolar , Consanguinidade , Feminino , Humanos , Lactente , Transtornos do Desenvolvimento da Linguagem/genética , Masculino , Mutação de Sentido Incorreto , Neuritos , Paquistão
8.
Stem Cell Res ; 50: 102114, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33340796

RESUMO

Availability of numerous high-quality iPSC lines is needed to overcome donor-associated variability caused by genetic background effects. We generated two human iPSC lines from dermal fibroblasts of two healthy females using Sendai virus reprogramming. Quality assessment of the iPSC lines confirmed the expression of pluripotency markers, trilineage differentiation capacity and absence of exogenous expression of reprogramming factors. Both iPSC lines were genetically stable with a genotype that matched the fibroblast lines of donors. These iPSC lines add to available reference lines as a resource for disease modeling of polygenic and multifactorial diseases, for evaluation of differentiation protocols and toxicology screening.

9.
Stem Cell Res ; 49: 102081, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33220594

RESUMO

Down syndrome (DS) is caused by trisomy for chromosome 21 (T21). We generated two induced pluripotent stem cell (iPSC) lines from skin fibroblasts of two males with DS using Sendai virus delivery of OCT4, SOX2, KLF4, and c-MYC. Characterization of the two iPSC lines, UUIGPi013-A and UUIPGi014-A, showed that they are genetically stable with a 47,XY,+21 karyotype. Both lines displayed expression of pluripotency markers and trilineage differentiation capacity. These two iPSC lines provide a useful resource for DS modeling and pharmacological interventions.


Assuntos
Síndrome de Down , Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Cromossomos Humanos Par 21 , Síndrome de Down/genética , Humanos , Fator 4 Semelhante a Kruppel , Masculino , Trissomia/genética
10.
Int J Hematol ; 112(6): 894-899, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32772263

RESUMO

Diamond-Blackfan Anemia (DBA) is a congenital pure red cell aplasia caused by heterozygous variants in ribosomal protein genes. The hematological features associated with DBA are highly variable and non-hematological abnormalities are common. We report herein on an affected mother and her daughter presenting with transfusion-dependent anemia. The mother showed mild physical abnormalities and entered spontaneous remission at age 13 years. Her daughter was born with occipital meningocele. Exome sequencing of DNA from the mother revealed a heterozygous novel splice site variant (NM_001011.4:c.508-3T > G) in the Ribosomal Protein S7 gene (RPS7) inherited by the daughter. Functional analysis of the RPS7 variant expressed from a mini-gene construct revealed that the exon 7 acceptor splice site was replaced by a cryptic splice resulting in a transcript missing 64 bp of exon 7 (p.Val170Serfs*8). Our study confirms a pathogenic effect of a novel RPS7 variant in DBA associated with spontaneous remission in the mother and meningocele in her daughter, thus adding to the genotype-phenotype correlations in DBA.


Assuntos
Anemia de Diamond-Blackfan/genética , Aberrações Cromossômicas , Estudos de Associação Genética , Variação Genética/genética , Meningocele/genética , Splicing de RNA/genética , Proteínas Ribossômicas/genética , Adolescente , Adulto , Anemia de Diamond-Blackfan/etiologia , Criança , Éxons/genética , Feminino , Humanos , Meningocele/etiologia , Relações Mãe-Filho , Remissão Espontânea , Análise de Sequência de DNA
11.
Stem Cell Res ; 44: 101739, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32126327

RESUMO

Incontinentia pigmenti (IP) is an X-linked dominant neuroectodermal dysplasia caused by loss-of-function mutations in the IKBKG gene. Using CRISPR/Cas9 technology, we generated an IKBKG knock-out iPSC line (KICRi002-A-1) on a 46,XY background. The iPSC line showed a normal karyotype, expressed pluripotency markers and exhibited capability to differentiate into the three germ layers in vitro. Off-target editing was excluded and no IKBKG mRNA expression could be detected. Our line offers a useful resource to elucidate mechanisms caused by IKBKG deficiency that leads to disrupted male fetal development and for drug screening to improve treatment of female patients with IP.


Assuntos
Linhagem Celular , Incontinência Pigmentar , Células-Tronco Pluripotentes Induzidas , Sistemas CRISPR-Cas/genética , Feminino , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Incontinência Pigmentar/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Mutação
12.
Stem Cell Res ; 44: 101758, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32203915

RESUMO

The role of Neurochondrin (NCDN) in humans is not well understood. Mice with a conditional Ncdn knock-out show epileptic seizures, depressive-like behaviours and impaired spatial learning. Using CRISPR/Cas9, we generated a Neurochondrin deficient human iPSC line KICRi002-A-3 carrying a homozygous 752 bp deletion / 2 bp insertion in the NCDN gene. The iPSC line maintained a normal 46,XY karyotype, expressed pluripotency markers and exhibited capability to differentiate into the three germ layers in vitro. Off-target editing was excluded and Neurochondrin expression was not detectable. The iPSC line offers a valuable resource to study the role of Neurochondrin during human neurogenesis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Camundongos , Proteínas do Tecido Nervoso
13.
Clin Epigenetics ; 12(1): 9, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31915063

RESUMO

BACKGROUND: Down syndrome (DS) is characterized by neurodevelopmental abnormalities caused by partial or complete trisomy of human chromosome 21 (T21). Analysis of Down syndrome brain specimens has shown global epigenetic and transcriptional changes but their interplay during early neurogenesis remains largely unknown. We differentiated induced pluripotent stem cells (iPSCs) established from two DS patients with complete T21 and matched euploid donors into two distinct neural stages corresponding to early- and mid-gestational ages. RESULTS: Using the Illumina Infinium 450K array, we assessed the DNA methylation pattern of known CpG regions and promoters across the genome in trisomic neural iPSC derivatives, and we identified a total of 500 stably and differentially methylated CpGs that were annotated to CpG islands of 151 genes. The genes were enriched within the DNA binding category, uncovering 37 factors of importance for transcriptional regulation and chromatin structure. In particular, we observed regional epigenetic changes of the transcription factor genes ZNF69, ZNF700 and ZNF763 as well as the HOXA3, HOXB3 and HOXD3 genes. A similar clustering of differential methylation was found in the CpG islands of the HIST1 genes suggesting effects on chromatin remodeling. CONCLUSIONS: The study shows that early established differential methylation in neural iPSC derivatives with T21 are associated with a set of genes relevant for DS brain development, providing a novel framework for further studies on epigenetic changes and transcriptional dysregulation during T21 neurogenesis.


Assuntos
Encéfalo/metabolismo , Metilação de DNA/genética , Síndrome de Down/genética , Epigenômica/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Adulto , Encéfalo/patologia , Montagem e Desmontagem da Cromatina/genética , Ilhas de CpG/genética , Síndrome de Down/complicações , Feminino , Feto/metabolismo , Feto/patologia , Regulação da Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/genética , Neurogênese/genética , Gravidez , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Trissomia/genética
14.
Front Genet ; 10: 896, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608123

RESUMO

The etiology of hereditary ataxia syndromes is heterogeneous, and the mechanisms underlying these disorders are often unknown. Here, we utilized exome sequencing in two siblings with progressive ataxia and muscular weakness and identified a novel homozygous splice mutation (c.3020-1G > A) in neurofascin (NFASC). In RNA extracted from fibroblasts, we showed that the mutation resulted in inframe skipping of exon 26, with a deprived expression of the full-length transcript that corresponds to NFASC isoform NF186. To further investigate the disease mechanisms, we reprogrammed fibroblasts from one affected sibling to induced pluripotent stem cells, directed them to neuroepithelial stem cells and finally differentiated to neurons. In early neurogenesis, differentiating cells with selective depletion of the NF186 isoform showed significantly reduced neurite outgrowth as well as fewer emerging neurites. Furthermore, whole-cell patch-clamp recordings of patient-derived neuronal cells revealed a lower threshold for openings, indicating altered Na+ channel kinetics, suggesting a lower threshold for openings as compared to neuronal cells without the NFASC mutation. Taken together, our results suggest that loss of the full-length NFASC isoform NF186 causes perturbed neurogenesis and impaired neuronal biophysical properties resulting in a novel early-onset autosomal recessive ataxia syndrome.

15.
Stem Cell Res ; 39: 101523, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31400703

RESUMO

Dravet syndrome (DS) is a childhood epilepsy syndrome caused by heterozygous mutations in the SCN1A gene encoding voltage-gated sodium channel Nav1.1. We generated iPSCs from fibroblasts of three DS patients carrying distinct SCN1A mutations (c.5502-5509dupGCTTGAAC, c.2965G>C and c.651C>G). The iPSC lines were genetically stable and each line retained the SCN1A gene mutation of the donor fibroblasts. Characterization of the iPSC lines confirmed expression of pluripotency markers, absence of exogenous vector expression and trilineage differentiation potential. These iPSC lines offer a useful resource to investigate the molecular mechanisms underlying Nav1.1 haploinsufficiency and for drug development to improve treatment of DS patients.


Assuntos
Epilepsias Mioclônicas/genética , Células-Tronco Pluripotentes Induzidas/citologia , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Mutação/genética , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
16.
Stem Cell Res ; 39: 101518, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31376723

RESUMO

Mowat-Wilson syndrome (MWS) is a complex developmental syndrome caused by heterozygous mutations in the Zinc finger E-box-binding homeobox 2 gene (ZEB2). We generated the first human iPSC lines from primary fibroblasts of two siblings with MWS carrying a heterozygous ZEB2 stop mutation (c.1027C > T; p.Arg343*) using the Sendai virus reprogramming system. Both iPSC lines were free from reprogramming vector genes, expressed pluripotency markers and showed potential to differentiate into the three germ layers. Genetic analysis confirmed normal karyotypes and a preserved stop mutation. These iPSC lines will provide a useful resource to study altered neural lineage fate and neuropathophysiology in MWS.


Assuntos
Doença de Hirschsprung/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Deficiência Intelectual/metabolismo , Microcefalia/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Criança , Fácies , Feminino , Humanos , Masculino , Mutação/genética
17.
Neurobiol Dis ; 132: 104583, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31445158

RESUMO

Dravet syndrome (DS) is an early onset refractory epilepsy typically caused by de novo heterozygous variants in SCN1A encoding the α-subunit of the neuronal sodium channel Nav1.1. The syndrome is characterized by age-related progression of seizures, cognitive decline and movement disorders. We hypothesized that the distinct neurodevelopmental features in DS are caused by the disruption of molecular pathways in Nav1.1 haploinsufficient cells resulting in perturbed neural differentiation and maturation. Here, we established DS-patient and control induced pluripotent stem cell derived neural progenitor cells (iPSC NPC) and GABAergic inter-neuronal (iPSC GABA) cells. The DS-patient iPSC GABA cells showed a shift in sodium current activation and a perturbed response to induced oxidative stress. Transcriptome analysis revealed specific dysregulations of genes for chromatin structure, mitotic progression, neural plasticity and excitability in DS-patient iPSC NPCs and DS-patient iPSC GABA cells versus controls. The transcription factors FOXM1 and E2F1, positive regulators of the disrupted pathways for histone modification and cell cycle regulation, were markedly up-regulated in DS-iPSC GABA lines. Our study highlights transcriptional changes and disrupted pathways of chromatin remodeling in Nav1.1 haploinsufficient GABAergic cells, providing a molecular framework that overlaps with that of neurodevelopmental disorders and other epilepsies.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Epilepsias Mioclônicas/genética , Neurônios GABAérgicos/metabolismo , Neurogênese/genética , Células Cultivadas , Epilepsias Mioclônicas/metabolismo , Haploinsuficiência , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Células-Tronco Neurais/metabolismo , Plasticidade Neuronal/fisiologia , Estresse Oxidativo/fisiologia , Transcriptoma
18.
J Clin Neurosci ; 67: 19-23, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31281085

RESUMO

Hereditary Spastic paraplegias (HSPs) are heterogeneous group of degenerative disorders characterized by progressive weakness and spasticity of the lower limbs, combined with additional neurological features. This study aimed to identify causative gene variants in two nonrelated consanguineous Pakistani families segregating HSP. Whole exome sequencing (WES) was performed on a total of five individuals from two families including four affected and one phenotypically normal individual. The variants were validated by Sanger sequencing and segregation analysis. In family A, a novel homozygous variant c.604G > A (p.Glu202Lys) was identified in the CYP2U1 gene with clinical symptoms of SPG56 in 3 siblings. Whereas, a previously reported variant c.5769delT (p.Ser1923Argfs*28) in the SPG11 gene was identified in family B manifesting clinical features of SPG11 in 3 affected individuals. Our combined findings add to the clinical and genetic variability associated with CYP2U1 and SPG11 variants highlighting the complexity of HSPs. These findings further emphasize the usefulness of WES as a powerful diagnostic tool.


Assuntos
Família 2 do Citocromo P450/genética , Sequenciamento do Exoma/métodos , Proteínas/genética , Paraplegia Espástica Hereditária/genética , Adulto , Criança , Feminino , Humanos , Masculino , Mutação , Paquistão , Linhagem , Fenótipo
19.
Stem Cell Res ; 38: 101474, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31176917

RESUMO

Von Hippel-Lindau (VHL) syndrome is a familial cancer syndrome caused by mutations in the tumor suppressor gene VHL. We generated human iPSC lines from primary dermal fibroblasts of three VHL syndrome patients carrying distinct VHL germ line mutations (c.194C>G, c.194C>T and nt440delTCT, respectively). Characterization of the iPSC lines confirmed expression of pluripotency markers, trilineage differentiation potential and absence of exogenous vector expression. The three hiPSC lines were genetically stable and retained the VHL mutation of each donor. These iPSC lines, the first derived from VHL syndrome patients, offer a useful resource to study disease pathophysiology and for anti-cancer drug development.


Assuntos
Mutação em Linhagem Germinativa , Células-Tronco Pluripotentes Induzidas , Proteína Supressora de Tumor Von Hippel-Lindau , Doença de von Hippel-Lindau , Linhagem Celular , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Doença de von Hippel-Lindau/genética , Doença de von Hippel-Lindau/metabolismo , Doença de von Hippel-Lindau/patologia
20.
Mol Neurobiol ; 56(10): 7113-7127, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30989628

RESUMO

Down syndrome (DS) or trisomy 21 (T21) is a leading genetic cause of intellectual disability. To gain insights into dynamics of molecular perturbations during neurogenesis in DS, we established a model using induced pluripotent stem cells (iPSC) with transcriptome profiles comparable to that of normal fetal brain development. When applied on iPSCs with T21, transcriptome and proteome signatures at two stages of differentiation revealed strong temporal dynamics of dysregulated genes, proteins and pathways belonging to 11 major functional clusters. DNA replication, synaptic maturation and neuroactive clusters were disturbed at the early differentiation time point accompanied by a skewed transition from the neural progenitor cell stage and reduced cellular growth. With differentiation, growth factor and extracellular matrix, oxidative phosphorylation and glycolysis emerged as major perturbed clusters. Furthermore, we identified a marked dysregulation of a set of genes encoded by chromosome 21 including an early upregulation of the hub gene APP, supporting its role for disturbed neurogenesis, and the transcription factors OLIG1, OLIG2 and RUNX1, consistent with deficient myelination and neuronal differentiation. Taken together, our findings highlight novel sequential and differentiation-dependent dynamics of disturbed functions, pathways and elements in T21 neurogenesis, providing further insights into developmental abnormalities of the DS brain.


Assuntos
Síndrome de Down/genética , Síndrome de Down/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios/metabolismo , Neurônios/patologia , Proteoma/metabolismo , Transcriptoma/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Feminino , Humanos , Masculino , Mitocôndrias/genética , Modelos Biológicos , Neuritos/metabolismo , Neurogênese/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...