Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37847691

RESUMO

RATIONALE: Idiopathic pulmonary fibrosis (IPF) causes progressive lung scarring and high mortality. Reliable and accurate prognostic biomarkers are urgently needed. OBJECTIVE: To identify and validate circulating protein biomarkers of IPF survival. METHODS: High-throughput proteomic data were generated using prospectively collected plasma samples from patients with IPF from the Pulmonary Fibrosis Foundation Patient Registry (discovery cohort) and the Universities of California-Davis, Chicago, and Virginia (validation cohort). Proteins associated with three-year transplant-free survival (TFS) were identified using multivariable Cox proportional hazards regression. Those associated with TFS after adjustment for false discovery in the discovery cohort were advanced for testing in the validation cohort, with proteins maintaining TFS association with consistent effect direction considered validated. After combining cohorts, functional analyses were performed, and machine learning used to derive a proteomic signature of TFS. MAIN RESULTS: Of 2921 proteins tested in the discovery cohort (n=871), 231 were associated with differential TFS. Of these, 140 maintained TFS association with consistent effect direction in the validation cohort (n=355). After combining cohorts, validated proteins with strongest TFS association were latent-transforming growth factor beta-binding protein 2 (HR 2.43, 95% CI 2.09-2.82), collagen alpha-1(XXIV) chain (HR 2.21; 95% CI 1.86-2.39) and keratin 19 (HR 1.60; 95% CI 1.47-1.74). In decision curve analysis, a proteomic signature of TFS outperformed a similarly derived clinical prediction model. CONCLUSIONS: In largest proteomic investigation of IPF outcomes performed to date, we identified and validated 140 protein biomarkers of TFS. These results shed important light on potential drivers of IPF progression.

2.
PLoS One ; 10(8): e0135451, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26270649

RESUMO

The purpose of this study was to evaluate the extent of overlapping immunogenic peptides between three pharmaceutical biologics and influenza viruses. Clinical studies have shown that subsets of patients with rheumatoid arthritis (RA) develop anti-drug antibodies towards anti-TNFα biologics. We postulate that common infectious pathogens, including influenza viruses, may sensitize RA patients toward recombinant proteins. We hypothesize that embedded within infliximab (IFX), adalimumab (ADA), and etanercept (ETN) are ligands of class II major histocompatibility complex (MHC-II) that mimic T cell epitopes derived from influenza hemagglutinin (HA). The rationale is that repeated administration of the biologics would reactivate HA-primed CD4 T cells, stimulating B cells to produce cross-reactive antibodies. Custom scripts were constructed using MATLAB to compare MHC-II ligands of HA and the biologics; all ligands were predicted using tools in Immune Epitope Database and Resources (IEDB). We analyzed three HLA-DR1 alleles (0101, 0401 and 1001) that are prominent in RA patients, and two alleles (0103 and 1502) that are not associated with RA. The results indicate that 0401 would present more analogues of HA ligands in the three anti-TNFα biologics compared to the other alleles. The approach led to identification of potential ligands in IFX and ADA that shares sequence homology with a known HA-specific CD4 T cell epitope. We also discovered a peptide in the complementarity-determining region 3 (CDR-3) of ADA that encompasses both a potential CD4 T cell epitope and a known B cell epitope in HA. The results may help generate new hypotheses for interrogating patient variability of immunogenicity of the anti-TNFα drugs. The approach would aid development of new recombinant biologics by identifying analogues of CD4 T cell epitopes of common pathogens at the preclinical stage.


Assuntos
Adalimumab/química , Etanercepte/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Antígenos de Histocompatibilidade Classe II/química , Infliximab/química , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adalimumab/imunologia , Bases de Dados de Proteínas , Epitopos/química , Epitopos/imunologia , Etanercepte/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Infliximab/imunologia , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...