Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1464: 1-11, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27567679

RESUMO

As the clinical development of cell-based therapeutics has evolved immensely within the past years, downstream processing strategies become more relevant than ever. Aqueous two-phase systems (ATPS) enable the label-free, scalable, and cost-effective separation of cells, making them a promising tool for downstream processing of cell-based therapeutics. Here, we report the development of an automated robotic screening that enables high-throughput cell partitioning analysis in ATPS. We demonstrate that this setup enables fast and systematic investigation of factors influencing cell partitioning. Moreover, we examined and optimized separation conditions for the differentiable promyelocytic cell line HL-60 and used a counter-current distribution-model to investigate optimal separation conditions for a multi-stage purification process. Finally, we show that the separation of CD11b-positive and CD11b-negative HL-60 cells is possible after partial DMSO-mediated differentiation towards the granulocytic lineage. The modeling data indicate that complete peak separation is possible with 30 transfers, and >93% of CD11b-positive HL-60 cells can be recovered with >99% purity. The here described screening platform facilitates faster, cheaper, and more directed downstream process development for cell-based therapeutics and presents a powerful tool for translational research.


Assuntos
Separação Celular/métodos , Células/química , Separação Celular/instrumentação , Terapia Baseada em Transplante de Células e Tecidos , Células/citologia , Humanos , Polietilenoglicóis/química
2.
Int J Pharm ; 511(1): 276-287, 2016 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-27421911

RESUMO

The colloidal stability of a protein solution during downstream processing, formulation, and storage is a key issue for the biopharmaceutical production process. Thus, knowledge about colloidal solution characteristics, such as the tendency to form aggregates or high viscosity, at various processing conditions is of interest. This work correlates changes in the apparent diffusion coefficient as a parameter of protein interactions with observed protein aggregation and dynamic viscosity of the respective protein samples. For this purpose, the diffusion coefficient, the protein phase behavior, and the dynamic viscosity in various systems containing the model proteins α-lactalbumin, lysozyme, and glucose oxidase were studied. Each of these experiments revealed a wide range of variations in protein interactions depending on protein type, protein concentration, pH, and the NaCl concentration. All these variations showed to be mirrored by changes in the apparent diffusion coefficient in the respective samples. Whereas stable samples with relatively low viscosity showed an almost linear dependence, the deviation from the concentration-dependent linearity indicated both an increase in the sample viscosity and probability of protein aggregation. This deviation of the apparent diffusion coefficient from concentration-dependent linearity was independent of protein type and solution properties for this study. Thus, this single parameter shows the potential to act as a prognostic tool for colloidal stability of protein solutions.


Assuntos
Coloides/química , Coloides/metabolismo , Lactalbumina/química , Lactalbumina/metabolismo , Muramidase/química , Muramidase/metabolismo , Animais , Bovinos , Galinhas , Difusão , Relação Dose-Resposta a Droga , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Concentração de Íons de Hidrogênio , Estabilidade Proteica , Soluções , Viscosidade
3.
Biotechnol J ; 11(5): 676-86, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26814049

RESUMO

High-throughput screening (HTS) technology is gaining increasing importance in downstream process development of cell-based products. The development of such HTS-technologies, however, is highly dependent on the availability of robust, accurate, and sensitive high-throughput cell quantification methods. In this article, we compare state-of-the-art cell quantification methods with focus on their applicability in HTS-platforms for downstream processing of cell-based products. Sensitivity, dynamic range, and precision were evaluated for four methods that differ in their respective mechanism. In addition, we evaluated the performance of these methods over a range of buffer compositions, medium densities, and viscosities, representing conditions found in many downstream processing methods. We found that CellTiter-Glo™ and flow cytometry are excellent tools for high-throughput cell quantification. Both methods have broad working ranges (3-4 log) and performed well over a wide range of buffer compositions. In comparison, CyQuant® Direct and CellTracker™ had smaller working ranges and were more sensitive to changes in buffer composition. For fast and sensitive quantification of a single cell type, CellTiter-Glo™ performed best, while for more complex cell mixtures flow cytometry is the method of choice. Our analysis will facilitate the selection of the most suitable method for a specific application and provides a benchmark for future HTS development in downstream processing of cell-based products.


Assuntos
Citometria de Fluxo/métodos , Ensaios de Triagem em Larga Escala/métodos , Proliferação de Células , Sobrevivência Celular , Células HL-60 , Humanos
4.
J Chromatogr A ; 1367: 68-77, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25280873

RESUMO

Over the last decade, the use of design of experiment approaches in combination with fully automated high throughput (HTP) compatible screenings supported by robotic liquid handling stations (LHS), adequate fast analytics and data processing has been developed in the biopharmaceutical industry into a strategy of high throughput process development (HTPD) resulting in lower experimental effort, sample reduction and an overall higher degree of process optimization. Apart from HTP technologies, lab-on-a-chip technology has experienced an enormous growth in the last years and allows further reduction of sample consumption. A combination of LHS and lab-on-a-chip technology is highly desirable and realized in the present work to characterize aqueous two phase systems with respect to tie lines. In particular, a new high throughput compatible approach for the characterization of aqueous two phase systems regarding tie lines by exploiting differences in phase densities is presented. Densities were measured by a standalone micro fluidic liquid density sensor, which was integrated into a liquid handling station by means of a developed generic Tip2World interface. This combination of liquid handling stations and lab-on-a-chip technology enables fast, fully automated, and highly accurate density measurements. The presented approach was used to determine the phase diagram of ATPSs composed of potassium phosphate (pH 7) and polyethylene glycol (PEG) with a molecular weight of 300, 400, 600 and 1000 Da respectively in the presence and in the absence of 3% (w/w) sodium chloride. Considering the whole ATPS characterization process, two complete ATPSs could be characterized within 24h, including four runs per ATPS for binodal curve determination (less than 45 min/run), and tie line determination (less than 45 min/run for ATPS preparation and 8h for density determination), which can be performed fully automated over night without requiring man power. The presented methodology provides a cost, time and material effective approach for characterization of ATPS phase diagram on base on highly accurate and comprehensive data. By this means the derived data opens the door for a more detailed description of ATPS towards generating mechanistic based models, since molecular approaches such as MD simulations or molecular descriptions along the line of QSAR heavily rely on accurate and comprehensive data.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Robótica , Limite de Detecção , Técnicas Analíticas Microfluídicas/instrumentação , Peso Molecular , Polietilenoglicóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...