Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 33(3): 29, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244790

RESUMO

Amniotic membrane (AM) is often applied as a substitute material during ocular surface reconstruction. However, since AM has several disadvantages, alternative materials must be considered for this application. Keratin films made from human hair (KFs) have previously been presented as a promising option; they exhibited suitable characteristics and satisfactory biocompatibility in an in vivo rabbit model. Nevertheless, dexamethasone (DEX) eye drops are necessary after surgery to suppress inflammation. Since eye drops must be administered frequently, this might result in poor patient compliance, and the release of DEX at the transplant site would be clinically beneficial. Therefore, we aimed to incorporate DEX into KFs without hindering the positive film characteristics. Drug-loaded KFs were generated either by suspension technique or by the addition of solubilizing agents. The resulting specimens were analyzed regarding appearance, loading capacity, transparency, mechanical characteristics, swelling behavior and in vitro release. Furthermore, biocompatibility was assessed in vitro by determining the cell viability, seeding efficiency and growth behavior of corneal epithelial cells. The amount of incorporated DEX influenced the transparency and biomechanical properties of the films, but even highly loaded films showed properties similar to those of AM. The suspension technique was identified as the best incorporation approach regarding chemical stability and prolonged DEX release. Moreover, suspended DEX in the films did not negatively impact cell seeding efficiencies, and the cell-growth behaviors on the specimens with moderate DEX loads were satisfactory. This suggest that these films could comprise a suitable alternative material with additional anti-inflammatory activity for ocular surface reconstruction. Graphical abstract.


Assuntos
Anti-Inflamatórios , Queratinas , Alicerces Teciduais , Âmnio , Animais , Anti-Inflamatórios/uso terapêutico , Dexametasona/química , Inflamação , Queratinas/química , Oftalmologia/métodos , Coelhos
2.
Nat Commun ; 12(1): 7171, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887403

RESUMO

Hedgehog (HH) morphogen signalling, crucial for cell growth and tissue patterning in animals, is initiated by the binding of dually lipidated HH ligands to cell surface receptors. Hedgehog-Interacting Protein (HHIP), the only reported secreted inhibitor of Sonic Hedgehog (SHH) signalling, binds directly to SHH with high nanomolar affinity, sequestering SHH. Here, we report the structure of the HHIP N-terminal domain (HHIP-N) in complex with a glycosaminoglycan (GAG). HHIP-N displays a unique bipartite fold with a GAG-binding domain alongside a Cysteine Rich Domain (CRD). We show that HHIP-N is required to convey full HHIP inhibitory function, likely by interacting with the cholesterol moiety covalently linked to HH ligands, thereby preventing this SHH-attached cholesterol from binding to the HH receptor Patched (PTCH1). We also present the structure of the HHIP C-terminal domain in complex with the GAG heparin. Heparin can bind to both HHIP-N and HHIP-C, thereby inducing clustering at the cell surface and generating a high-avidity platform for SHH sequestration and inhibition. Our data suggest a multimodal mechanism, in which HHIP can bind two specific sites on the SHH morphogen, alongside multiple GAG interactions, to inhibit SHH signalling.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas Hedgehog/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Transdução de Sinais , Proteínas de Transporte/genética , Colesterol/química , Colesterol/metabolismo , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Humanos , Ligantes , Glicoproteínas de Membrana/genética , Ligação Proteica , Domínios Proteicos
3.
Mol Cell ; 81(24): 5025-5038.e10, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34890564

RESUMO

The Sonic Hedgehog (SHH) morphogen pathway is fundamental for embryonic development and stem cell maintenance and is implicated in various cancers. A key step in signaling is transfer of a palmitate group to the SHH N terminus, catalyzed by the multi-pass transmembrane enzyme Hedgehog acyltransferase (HHAT). We present the high-resolution cryo-EM structure of HHAT bound to substrate analog palmityl-coenzyme A and a SHH-mimetic megabody, revealing a heme group bound to HHAT that is essential for HHAT function. A structure of HHAT bound to potent small-molecule inhibitor IMP-1575 revealed conformational changes in the active site that occlude substrate binding. Our multidisciplinary analysis provides a detailed view of the mechanism by which HHAT adapts the membrane environment to transfer an acyl chain across the endoplasmic reticulum membrane. This structure of a membrane-bound O-acyltransferase (MBOAT) superfamily member provides a blueprint for other protein-substrate MBOATs and a template for future drug discovery.


Assuntos
Aciltransferases/antagonistas & inibidores , Aciltransferases/metabolismo , Inibidores Enzimáticos/farmacologia , Proteínas Hedgehog/metabolismo , Proteínas de Membrana/metabolismo , Acilação , Aciltransferases/genética , Aciltransferases/ultraestrutura , Regulação Alostérica , Animais , Células COS , Domínio Catalítico , Chlorocebus aethiops , Microscopia Crioeletrônica , Células HEK293 , Heme/metabolismo , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/ultraestrutura , Simulação de Dinâmica Molecular , Palmitoil Coenzima A/metabolismo , Conformação Proteica , Transdução de Sinais , Relação Estrutura-Atividade
4.
Cell ; 184(8): 2103-2120.e31, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33740419

RESUMO

During cell migration or differentiation, cell surface receptors are simultaneously exposed to different ligands. However, it is often unclear how these extracellular signals are integrated. Neogenin (NEO1) acts as an attractive guidance receptor when the Netrin-1 (NET1) ligand binds, but it mediates repulsion via repulsive guidance molecule (RGM) ligands. Here, we show that signal integration occurs through the formation of a ternary NEO1-NET1-RGM complex, which triggers reciprocal silencing of downstream signaling. Our NEO1-NET1-RGM structures reveal a "trimer-of-trimers" super-assembly, which exists in the cell membrane. Super-assembly formation results in inhibition of RGMA-NEO1-mediated growth cone collapse and RGMA- or NET1-NEO1-mediated neuron migration, by preventing formation of signaling-compatible RGM-NEO1 complexes and NET1-induced NEO1 ectodomain clustering. These results illustrate how simultaneous binding of ligands with opposing functions, to a single receptor, does not lead to competition for binding, but to formation of a super-complex that diminishes their functional outputs.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas Ligadas por GPI/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Oncogênicas/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/química , Movimento Celular , Receptor DCC/deficiência , Receptor DCC/genética , Proteínas Ligadas por GPI/química , Cones de Crescimento/fisiologia , Humanos , Ventrículos Laterais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/química , Neurônios/citologia , Neurônios/metabolismo , Proteínas Oncogênicas/química , Proteínas Oncogênicas/genética , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
5.
Nat Chem Biol ; 15(10): 975-982, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31548691

RESUMO

Hedgehog (HH) ligands, classical morphogens that pattern embryonic tissues in all animals, are covalently coupled to two lipids-a palmitoyl group at the N terminus and a cholesteroyl group at the C terminus. While the palmitoyl group binds and inactivates Patched 1 (PTCH1), the main receptor for HH ligands, the function of the cholesterol modification has remained mysterious. Using structural and biochemical studies, along with reassessment of previous cryo-electron microscopy structures, we find that the C-terminal cholesterol attached to Sonic hedgehog (Shh) binds the first extracellular domain of PTCH1 and promotes its inactivation, thus triggering HH signaling. Molecular dynamics simulations show that this interaction leads to the closure of a tunnel through PTCH1 that serves as the putative conduit for sterol transport. Thus, Shh inactivates PTCH1 by grasping its extracellular domain with two lipidic pincers, the N-terminal palmitate and the C-terminal cholesterol, which are both inserted into the PTCH1 protein core.


Assuntos
Proteínas Hedgehog/metabolismo , Receptor Patched-1/metabolismo , Animais , Colesterol/química , Regulação da Expressão Gênica , Células HEK293 , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Humanos , Camundongos , Modelos Moleculares , Células NIH 3T3 , Receptor Patched-1/química , Ligação Proteica , Conformação Proteica , Anticorpos de Domínio Único
6.
Mol Cell ; 75(3): 605-619.e6, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31255466

RESUMO

Accurate DNA replication is essential to preserve genomic integrity and prevent chromosomal instability-associated diseases including cancer. Key to this process is the cells' ability to stabilize and restart stalled replication forks. Here, we show that the EXD2 nuclease is essential to this process. EXD2 recruitment to stressed forks suppresses their degradation by restraining excessive fork regression. Accordingly, EXD2 deficiency leads to fork collapse, hypersensitivity to replication inhibitors, and genomic instability. Impeding fork regression by inactivation of SMARCAL1 or removal of RECQ1's inhibition in EXD2-/- cells restores efficient fork restart and genome stability. Moreover, purified EXD2 efficiently processes substrates mimicking regressed forks. Thus, this work identifies a mechanism underpinned by EXD2's nuclease activity, by which cells balance fork regression with fork restoration to maintain genome stability. Interestingly, from a clinical perspective, we discover that EXD2's depletion is synthetic lethal with mutations in BRCA1/2, implying a non-redundant role in replication fork protection.


Assuntos
DNA Helicases/genética , Replicação do DNA/genética , Exodesoxirribonucleases/genética , RecQ Helicases/genética , Proteína BRCA1/genética , Proteína BRCA2/genética , Instabilidade Genômica/genética , Células HeLa , Humanos , Neoplasias/genética , Mutações Sintéticas Letais/genética
7.
Methods ; 108: 92-8, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27102626

RESUMO

Faithful duplication of genetic material during every cell division is essential to ensure accurate transmission of genetic information to daughter cells. DNA helicases play a crucial role in promoting this process by facilitating almost all transactions occurring on DNA, including DNA replication and repair. They are responsible not only for DNA double helix unwinding ahead of progressing replication forks but also for resolution of secondary structures like G4 quadruplexes, HJ branch migration, double HJ dissolution, protein displacement, strand annealing and many more. Their importance in maintaining genome stability is underscored by the fact that many human disorders, including cancer, are associated with mutations in helicase genes. Here we outline how DNA fibre fluorography, a straightforward and inexpensive approach, can be employed to study the in vivo function of helicases in DNA replication and the maintenance of genome stability at a single molecule level. This approach directly visualizes the progression of individual replication forks within living cells and hence provides quantitative information on various aspects of DNA synthesis, such as replication fork processivity (replication speed), fork stalling, origin usage and fork termination.


Assuntos
DNA Helicases/genética , Replicação do DNA/genética , Engenharia Genética/métodos , DNA Helicases/química , Reparo do DNA/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Quadruplex G , Instabilidade Genômica/genética , Humanos
8.
Mol Cell ; 60(3): 351-61, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26593718

RESUMO

DNA replication stress can cause chromosomal instability and tumor progression. One key pathway that counteracts replication stress and promotes faithful DNA replication consists of the Fanconi anemia (FA) proteins. However, how these proteins limit replication stress remains largely elusive. Here we show that conflicts between replication and transcription activate the FA pathway. Inhibition of transcription or enzymatic degradation of transcription-associated R-loops (DNA:RNA hybrids) suppresses replication fork arrest and DNA damage occurring in the absence of a functional FA pathway. Furthermore, we show that simple aldehydes, known to cause leukemia in FA-deficient mice, induce DNA:RNA hybrids in FA-depleted cells. Finally, we demonstrate that the molecular mechanism by which the FA pathway limits R-loop accumulation requires FANCM translocase activity. Failure to activate a response to physiologically occurring DNA:RNA hybrids may critically contribute to the heightened cancer predisposition and bone marrow failure of individuals with mutated FA proteins.


Assuntos
Dano ao DNA , DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Instabilidade Genômica , Ácidos Nucleicos Heteroduplexes/metabolismo , Animais , DNA Helicases/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Células HeLa , Humanos , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Camundongos , Camundongos Knockout , Mutação , Ácidos Nucleicos Heteroduplexes/genética
9.
Mol Cell ; 57(6): 1133-1141, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25794620

RESUMO

The Bloom syndrome helicase BLM and topoisomerase-IIß-binding protein 1 (TopBP1) are key regulators of genome stability. It was recently proposed that BLM phosphorylation on Ser338 mediates its interaction with TopBP1, to protect BLM from ubiquitylation and degradation (Wang et al., 2013). Here, we show that the BLM-TopBP1 interaction does not involve Ser338 but instead requires BLM phosphorylation on Ser304. Furthermore, we establish that disrupting this interaction does not markedly affect BLM stability. However, BLM-TopBP1 binding is important for maintaining genome integrity, because in its absence cells display increased sister chromatid exchanges, replication origin firing and chromosomal aberrations. Therefore, the BLM-TopBP1 interaction maintains genome stability not by controlling BLM protein levels, but via another as-yet undetermined mechanism. Finally, we identify critical residues that mediate interactions between TopBP1 and MDC1, and between BLM and TOP3A/RMI1/RMI2. Taken together, our findings provide molecular insights into a key tumor suppressor and genome stability network.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Proteínas Nucleares/metabolismo , RecQ Helicases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Fosforilação , RecQ Helicases/genética , Serina/metabolismo , Transativadores/genética , Transativadores/metabolismo
10.
Cell Rep ; 7(5): 1547-1559, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24835992

RESUMO

Numerous human genome instability syndromes, including cancer, are closely associated with events arising from malfunction of the essential recombinase Rad51. However, little is known about how Rad51 is dynamically regulated in human cells. Here, we show that the breast cancer susceptibility protein BRCA2, a key Rad51 binding partner, coordinates the activity of the central cell-cycle drivers CDKs and Plk1 to promote Rad51-mediated genome stability control. The soluble nuclear fraction of BRCA2 binds Plk1 directly in a cell-cycle- and CDK-dependent manner and acts as a molecular platform to facilitate Plk1-mediated Rad51 phosphorylation. This phosphorylation is important for enhancing the association of Rad51 with stressed replication forks, which in turn protects the genomic integrity of proliferating human cells. This study reveals an elaborate but highly organized molecular interplay between Rad51 regulators and has significant implications for understanding tumorigenesis and therapeutic resistance in patients with BRCA2 deficiency.


Assuntos
Proteína BRCA2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Instabilidade Genômica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína BRCA2/genética , Replicação do DNA , Exonucleases/metabolismo , Células HEK293 , Células HeLa , Humanos , Ligação Proteica , Quinase 1 Polo-Like
11.
J Cell Biol ; 201(1): 33-48, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23530069

RESUMO

Defective DNA repair causes Fanconi anemia (FA), a rare childhood cancer-predisposing syndrome. At least 15 genes are known to be mutated in FA; however, their role in DNA repair remains unclear. Here, we show that the FANCJ helicase promotes DNA replication in trans by counteracting fork stalling on replication barriers, such as G4 quadruplex structures. Accordingly, stabilization of G4 quadruplexes in ΔFANCJ cells restricts fork movements, uncouples leading- and lagging-strand synthesis and generates small single-stranded DNA gaps behind the fork. Unexpectedly, we also discovered that FANCJ suppresses heterochromatin spreading by coupling fork movement through replication barriers with maintenance of chromatin structure. We propose that FANCJ plays an essential role in counteracting chromatin compaction associated with unscheduled replication fork stalling and restart, and suppresses tumorigenesis, at least partially, in this replication-specific manner.


Assuntos
Proteínas Aviárias/metabolismo , DNA Helicases/metabolismo , Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , DNA de Cadeia Simples/metabolismo , Heterocromatina/enzimologia , Animais , Proteínas Aviárias/genética , Linhagem Celular , Galinhas , DNA Helicases/genética , DNA de Cadeia Simples/genética , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Heterocromatina/genética , Humanos
12.
Hum Mol Genet ; 21(9): 2005-16, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22279085

RESUMO

FANCM is the most highly conserved protein within the Fanconi anaemia (FA) tumour suppressor pathway. However, although FANCM contains a helicase domain with translocase activity, this is not required for its role in activating the FA pathway. Instead, we show here that FANCM translocaseactivity is essential for promoting replication fork stability. We demonstrate that cells expressing translocase-defective FANCM show altered global replication dynamics due to increased accumulation of stalled forks that subsequently degenerate into DNA double-strand breaks, leading to ATM activation, CTBP-interacting protein (CTIP)-dependent end resection and homologous recombination repair. Accordingly, abrogation of ATM or CTIP function in FANCM-deficient cells results in decreased cell survival. We also found that FANCM translocase activity protects cells from accumulating 53BP1-OPT domains, which mark lesions resulting from problems arising during replication. Taken together, these data show that FANCM plays an essential role in maintaining chromosomal integrity by promoting the recovery of stalled replication forks and hence preventing tumourigenesis.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA/fisiologia , Proteínas de Transporte de Nucleotídeos/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Quebras de DNA de Cadeia Dupla , DNA Helicases/antagonistas & inibidores , DNA Helicases/genética , Reparo do DNA , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Recombinação Homóloga , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Biológicos , Proteínas de Transporte de Nucleotídeos/antagonistas & inibidores , Proteínas de Transporte de Nucleotídeos/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
13.
J Vis Exp ; (56): e3255, 2011 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-22064662

RESUMO

Maintenance of replication fork stability is of utmost importance for dividing cells to preserve viability and prevent disease. The processes involved not only ensure faithful genome duplication in the face of endogenous and exogenous DNA damage but also prevent genomic instability, a recognized causative factor in tumor development. Here, we describe a simple and cost-effective fluorescence microscopy-based method to visualize DNA replication in the avian B-cell line DT40. This cell line provides a powerful tool to investigate protein function in vivo by reverse genetics in vertebrate cells(1). DNA fiber fluorography in DT40 cells lacking a specific gene allows one to elucidate the function of this gene product in DNA replication and genome stability. Traditional methods to analyze replication fork dynamics in vertebrate cells rely on measuring the overall rate of DNA synthesis in a population of pulse-labeled cells. This is a quantitative approach and does not allow for qualitative analysis of parameters that influence DNA synthesis. In contrast, the rate of movement of active forks can be followed directly when using the DNA fiber technique(2-4). In this approach, nascent DNA is labeled in vivo by incorporation of halogenated nucleotides (Fig 1A). Subsequently, individual fibers are stretched onto a microscope slide, and the labeled DNA replication tracts are stained with specific antibodies and visualized by fluorescence microscopy (Fig 1B). Initiation of replication as well as fork directionality is determined by the consecutive use of two differently modified analogues. Furthermore, the dual-labeling approach allows for quantitative analysis of parameters that influence DNA synthesis during the S-phase, i.e. replication structures such as ongoing and stalled forks, replication origin density as well as fork terminations. Finally, the experimental procedure can be accomplished within a day, and requires only general laboratory equipment and a fluorescence microscope.


Assuntos
Replicação do DNA , DNA/análise , DNA/biossíntese , Microscopia de Fluorescência/métodos , Animais , Linhagem Celular , Galinhas
15.
EMBO J ; 29(4): 806-18, 2010 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-20057355

RESUMO

Fanconi anaemia is a chromosomal instability disorder associated with cancer predisposition and bone marrow failure. Among the 13 identified FA gene products only one, the DNA translocase FANCM, has homologues in lower organisms, suggesting a conserved function in DNA metabolism. However, a precise role for FANCM in DNA repair remains elusive. Here, we show a novel function for FANCM that is distinct from its role in the FA pathway: promoting replication fork restart and simultaneously limiting the accumulation of RPA-ssDNA. We show that in DT40 cells this process is controlled by ATR and PLK1, and that in the absence of FANCM, stalled replication forks are unable to resume DNA synthesis and genome duplication is ensured by excess origin firing. Unexpectedly, we also uncover an early role for FANCM in ATR-mediated checkpoint signalling by promoting chromatin retention of TopBP1. Failure to retain TopBP1 on chromatin impacts on the ability of ATR to phosphorylate downstream molecular targets, including Chk1 and SMC1. Our data therefore indicate a fundamental role for FANCM in the maintenance of genome integrity during S phase.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Helicases/metabolismo , Replicação do DNA/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas Aviárias/deficiência , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Linhagem Celular , Quinase 1 do Ponto de Checagem , Galinhas , Cromatina/metabolismo , DNA Helicases/deficiência , DNA Helicases/genética , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fase S , Transdução de Sinais , Estresse Fisiológico , Proteínas Supressoras de Tumor/metabolismo , Quinase 1 Polo-Like
16.
Cell Cycle ; 6(20): 2531-40, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17704647

RESUMO

The IkappaB kinase (IKK) complex controls processes such as inflammation, immune responses, cell survival and the proliferation of both normal and tumor cells. By activating NFkappaB, the IKK complex contributes to G1/S transition and first evidence has been presented that IKKalpha also regulates entry into mitosis. At what stage IKK is required and whether IKK also contributes to progression through mitosis and cytokinesis, however, has not yet been determined. In this study, we use BMS-345541, a potent allosteric small molecule inhibitor of IKK, to inhibit IKK specifically during G2 and during mitosis. We show that BMS-345541 affects several mitotic cell cycle transitions, including mitotic entry, prometaphase to anaphase progression and cytokinesis. Adding BMS-345541 to the cells released from arrest in S-phase blocked the activation of Aurora A, B and C, Cdk1 activation and histone H3 phosphorylation. Additionally, treatment of the mitotic cells with BMS-345541 resulted in precocious cyclin B1 and securin degradation, defective chromosome separation and improper cytokinesis. BMS-345541 was also found to override the spindle checkpoint in nocodazole-arrested cells. In vitro kinase assays using BMS-345541 indicate that these effects are not primarily due to a direct inhibitory effect of BMS-345541 on mitotic kinases such as Cdk1, Aurora A or B, Plk1 or NEK2. This study points towards a new potential role of IKK in cell cycle progression. Since deregulation of the cell cycle is one of the hallmarks of tumor formation and progression, the newly discovered level of BMS-345541 function could be useful for cell cycle control studies and may provide valuable clues for the design of future therapeutics.


Assuntos
Quinase I-kappa B/metabolismo , Imidazóis/farmacologia , Mitose/efeitos dos fármacos , Quinoxalinas/farmacologia , Animais , Linhagem Celular , Chlorocebus aethiops , Cromossomos de Mamíferos/genética , Ciclina A/metabolismo , Ciclina B/metabolismo , Ciclina B1 , Humanos , Fuso Acromático/metabolismo , Telomerase/genética , Telomerase/metabolismo
17.
Blood Cells Mol Dis ; 39(3): 263-71, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17588787

RESUMO

B-MYB is an oncoprotein highly expressed and frequently amplified in human neoplasia. B-MYB is more expressed in neuroblastoma patients with adverse prognostic indicators, corroborating the hypothesis that it plays an important role in this pediatric malignancy. While attempting targeting strategies for therapeutic purposes, we found that the B-MYB protein was difficult to downregulate in neuroblastoma cells using siRNA approaches. This lead us to discover that the B-MYB protein half-life is increased in neuroblastoma compared to other normal or transformed human cell lines. The B-MYB protein is quickly destroyed and apoptosis is induced in Ewing sarcoma cells exposed to UV irradiation. In contrast, neuroblastoma cells are resistant to UV-induced apoptosis and B-MYB protein levels do not change in UV-treated cells. In further experiments, we show that the B-MYB protein extracted from neuroblastoma cells is hypophosphorylated. It was previously shown that B-MYB phosphorylation activates its transcriptional activity but also promotes its destruction. Overexpression of a non-phosphorylatable B-MYB mutant protects cells from UV-induced apoptosis, suggesting that its reduced phosphorylation, rather than causing its inactivation, facilitates B-MYB pro-survival activity. Thus, expression of stable, hypophosphorylated B-MYB in neuroblastoma may promote cell survival and induce aggressive tumour growth.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neuroblastoma/metabolismo , Transativadores/metabolismo , Apoptose/fisiologia , Proteínas de Ciclo Celular/química , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Proteínas de Ligação a DNA/química , Humanos , Neuroblastoma/patologia , Fosforilação , Transativadores/química , Raios Ultravioleta
18.
J Biol Chem ; 280(16): 15628-34, 2005 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15618219

RESUMO

B-MYB is a ubiquitous transcription factor with an essential role in mouse development. Because cells with a disrupted B-MYB gene cannot be obtained, it is still unknown what is the critical function(s) exerted by B-MYB in mammalian cells. In this study we have observed that reducing B-MYB expression in primary human fibroblasts by using RNA interference results in a partial block of the cells in the G(2) phase of the cell cycle and cell death. Surprisingly, suppressing B-MYB transcriptional activity with a dominant-negative molecule is without effect, suggesting that its transactivating function is not essential. Only human or murine fibroblasts exposed to high temperature are sensitized to cell death in the presence of dominant-negative B-MYB. This correlates with temperature-dependent binding of endogenous B-MYB to transcriptional regulatory elements of the stress-related gene ApoJ/clusterin. We find that regulation of ApoJ/clusterin by B-MYB is a pro-survival response to thermal stress. Thus, B-MYB is regulated by temperature to activate genes required for cell survival.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Transativadores/genética , Proteínas de Ciclo Celular/biossíntese , Morte Celular/genética , Sobrevivência Celular/genética , Proteínas de Ligação a DNA/biossíntese , Fibroblastos/metabolismo , Fase G2/genética , Humanos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Temperatura , Transativadores/biossíntese
19.
Science ; 298(5595): 1033-6, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-12411708

RESUMO

Parasites have evolved a plethora of mechanisms to ensure their propagation and evade antagonistic host responses. The intracellular protozoan parasite Theileria is the only eukaryote known to induce uncontrolled host cell proliferation. Survival of Theileria-transformed leukocytes depends strictly on constitutive nuclear factor kappa B (NF-kappaB) activity. We found that this was mediated by recruitment of the multisubunit IkappaB kinase (IKK) into large, activated foci on the parasite surface. IKK signalosome assembly was specific for the transforming schizont stage of the parasite and was down-regulated upon differentiation into the nontransforming merozoite stage. Our findings provide insights into IKK activation and how pathogens subvert host-cell signaling pathways.


Assuntos
Leucócitos/parasitologia , Proteínas Serina-Treonina Quinases/metabolismo , Theileria/patogenicidade , Transporte Ativo do Núcleo Celular , Animais , Antiprotozoários/farmacologia , Apoptose , Bovinos , Ciclo Celular , Divisão Celular , Linhagem Celular Transformada , Núcleo Celular/metabolismo , Regulação para Baixo , Quinase I-kappa B , Proteínas I-kappa B/metabolismo , Leucócitos/enzimologia , Leucócitos/fisiologia , Microscopia Confocal , NF-kappa B/metabolismo , Naftoquinonas/farmacologia , Fosforilação , Transdução de Sinais , Theileria/crescimento & desenvolvimento , Theileria/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...