Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0306515, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38954721

RESUMO

BACKGROUND: Bicuspid aortic valves (BAV) are frequently associated with ascending aortic aneurysms. The etiology is incompletely understood, but genetic factors, in addition to flow perturbations, are likely involved. Since loss of contractility and elaboration of extracellular matrix in the vessel wall are features of BAV-associated aortopathy, phenotypic modulation of smooth muscle cells (SMCs) may play a role. METHODS: Ascending aortic tissue was collected intra-operatively from 25 individuals with normal (i.e., tricuspid) aortic valves (TAV) and from 25 individuals with BAVs. For both TAV and BAV, 10 patients had non-dilated (ND) and 15 patients had dilated (D) aortas. SMCs were isolated and cultured from a subset of patients from each group. Aortic tissue and SMCs were fluorescently immunolabeled for SMC phenotypic markers (i.e., alpha-smooth muscle actin (ASMA, contractile), vimentin (synthetic) and p16INK4a and p21Cip1 (senescence). SMCs were also analyzed for replicative senescence in culture. RESULTS: In normal-sized and dilated BAV aortas, SMCs switched from the contractile state to either synthetic or senescent phenotypes, as observed by loss of ASMA (ND: P = 0.001, D: P = 0.002) and associated increases in vimentin (ND: P = 0.03, D: P = 0.004) or p16/p21 (ND: P = 0.03, D: P<0.0001) compared to TAV. Dilatation of the aorta exacerbated SMC phenotypic switching in both BAV and TAV aortas (all P<0.05). In SMCs cultured from normal and dilated aortas, those isolated from BAV reached replicative senescence faster than those from TAV aortas (all P = 0.02). Furthermore, there was a stark inverse correlation between ASMA and cell passage number in BAV SMCs (ND: P = 0.0006, D: P = 0.01), but not in TAV SMCs (ND: P = 0.93, D: P = 0.20). CONCLUSIONS: The findings of this study provide direct evidence from cell culture studies implying that SMCs switch from the contractile state to either synthetic or senescent phenotypes in the non-dilated BAV aorta. In cultured SMCs from both non-dilated and dilated aortas, we found that this process may precede dilatation and accompany aneurysm development in BAV. Our findings suggest that therapeutically targeting SMC phenotypic modulation in BAV patients may be a viable option to prevent or delay ascending aortic aneurysm formation.


Assuntos
Aorta , Valva Aórtica , Doença da Válvula Aórtica Bicúspide , Doenças das Valvas Cardíacas , Miócitos de Músculo Liso , Fenótipo , Humanos , Valva Aórtica/patologia , Valva Aórtica/metabolismo , Valva Aórtica/anormalidades , Doença da Válvula Aórtica Bicúspide/patologia , Doença da Válvula Aórtica Bicúspide/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Doenças das Valvas Cardíacas/metabolismo , Doenças das Valvas Cardíacas/patologia , Aorta/patologia , Aorta/metabolismo , Masculino , Pessoa de Meia-Idade , Feminino , Dilatação Patológica , Adulto , Senescência Celular , Células Cultivadas , Idoso , Actinas/metabolismo , Aneurisma Aórtico/metabolismo , Aneurisma Aórtico/patologia , Vimentina/metabolismo
2.
J Thorac Cardiovasc Surg ; 166(6): 1604-1616.e1, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37500054

RESUMO

BACKGROUND: Aortic complications are more likely to occur in patients with ascending aortic aneurysms and concomitant aortic regurgitation (AR). AR may have a negative influence on the aortic wall structure even in patients with tricuspid aortic valves and absence of aortic dilatation. It is unknown whether smooth muscle cell (SMC) changes are a feature of AR-associated aortic remodeling. METHODS: Nondilated aortic samples were harvested intraoperatively from individuals with normal aortic valves (n = 10) or those with either predominant aortic stenosis (AS) (n = 20) or AR (n = 35). Tissue from each patient was processed for immunohistochemistry or used for the extraction of medial SMCs. Tissue and cells were stained for markers of SMC contraction (alpha-smooth muscle actin), synthesis (vimentin) and senescence (p16INK4A and p21Cip1 [p16/p21]). Replicative capacity was analyzed in cultured SMCs from AS- and AR-associated aortas. A subanalysis compared SMCs from individuals with either tricuspid aortic valves or bicuspid aortic valves to evaluate the effect of aortic valve morphology. RESULTS: In aortic tissue samples, AR was associated with decreased alpha-smooth muscle actin and increased vimentin, p16 and p21 compared with normal aortic valves and AS. In cell culture, SMCs from AR-aortas had decreased alpha-smooth muscle actin and increased vimentin compared with SMCs from AS-aortas. AR-associated SMCs had increased p16 and p21 expression, and they reached senescence earlier than SMCs from AS-aortas. In AR, SMC changes were more pronounced with the presence of a bicuspid aortic valve. CONCLUSIONS: AR itself negatively influences SMC phenotype in the ascending aortic wall. This AR-specific effect is independent of aortic diameter and aortic valve morphology, although it is more pronounced with bicuspid aortic valves. These findings provide insight into the mechanisms of AR-related aortic remodeling, and they provide a model for studying SMC-specific therapies in culture.


Assuntos
Insuficiência da Valva Aórtica , Estenose da Valva Aórtica , Doença da Válvula Aórtica Bicúspide , Humanos , Doença da Válvula Aórtica Bicúspide/metabolismo , Vimentina/metabolismo , Aorta Torácica/metabolismo , Actinas/metabolismo , Aorta , Valva Aórtica/metabolismo , Miócitos de Músculo Liso/metabolismo , Estenose da Valva Aórtica/metabolismo , Fenótipo
3.
Front Cardiovasc Med ; 10: 1114355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895832

RESUMO

Objectives: Ascending aortic aneurysms are associated with pre-existing conditions, including connective tissue disorders (i.e., Marfan syndrome) and bicuspid aortic valves. The underlying mechanisms remain uncertain. Even less is known regarding ascending aortic aneurysms in individuals with normal (i.e., tricuspid) aortic valves (TAV), and without known aneurysm-associated disorders. Regardless of etiology, the risk of aortic complications increases with biological age. Phenotypic modulation of smooth muscle cells (SMCs) is a feature of ascending aortic aneurysms, whereby contractile SMCs are replaced with synthetic SMCs that are capable of degrading the aortic wall. We asked whether age itself causes dysfunctional SMC phenotype modulation, independent of aortic dilatation or pre-existing aneurysm-associated diseases. Methods: Non-dilated ascending aortic samples were obtained intra-operatively from 40 patients undergoing aortic valve surgery (range: 20-82 years old, mean: 59.1 ± 15.2). Patients with known genetic diseases or aortic valve malformations were excluded. Tissue was divided, and a portion was formalin-fixed and immunolabeled for alpha-smooth muscle actin (ASMA), a contractile SMC protein, and markers of synthetic (vimentin) or senescent (p16/p21) SMCs. Another fragment was used for SMC isolation (n = 10). Cultured SMCs were fixed at cell passage 2 and stained for phenotype markers, or were cultured indefinitely to determine replicative capacity. Results: In whole tissue, ASMA decreased (R2 = 0.47, P < 0.0001), while vimentin increased (R2 = 0.33, P = 0.02) with age. In cultured SMCs, ASMA decreased (R2 = 0.35, P = 0.03) and vimentin increased (R2 = 0.25, P = 0.04) with age. p16 (R2 = 0.34, P = 0.02) and p21 (R2 = 0.29, P = 0.007) also increased with age in SMCs. Furthermore, the replicative capacity of SMCs from older patients was decreased compared to that of younger patients (P = 0.03). Conclusion: By investigating non-dilated aortic samples from individuals with normal TAVs, we found that age itself has a negative impact on SMCs in the ascending aortic wall, whereby SMCs switched from the contractile phenotype to maladaptive synthetic or senescent states with increased age. Therefore, based on our findings, modification of SMC phenotype should be studied as a therapeutic consideration against aneurysms in the future, regardless of etiology.

4.
Sci Rep ; 12(1): 15476, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104385

RESUMO

We sought to determine whether there are differences in transforming growth factor-beta (TGFß) signaling in aneurysms associated with bicuspid (BAV) and unicuspid (UAV) aortic valves versus normal aortic valves. Ascending aortic aneurysms are frequently associated with BAV and UAV. The mechanisms are not yet clearly defined, but similarities to transforming growth factor-beta TGFß vasculopathies (i.e. Marfan, Loeys-Dietz syndromes) are reported. Non-dilated (ND) and aneurysmal (D) ascending aortic tissue was collected intra-operatively from individuals with a TAV (N = 10ND, 10D), BAV (N = 7ND, 8D) or UAV (N = 7ND, 8D). TGFß signaling and aortic remodeling were assessed through immuno-assays and histological analyses. TGFß1 was increased in BAV/UAV-ND aortas versus TAV (P = 0.02 and 0.04, respectively). Interestingly, TGFß1 increased with dilatation in TAV (P = 0.03) and decreased in BAV/UAV (P = 0.001). In TAV, SMAD2 and SMAD3 phosphorylation (pSMAD2, pSMAD3) increased with dilatation (all P = 0.04) and with TGFß1 concentration (P = 0.04 and 0.03). No relationship between TGFß1 and pSMAD2 or pSMAD3 was observed for BAV/UAV (all P > 0.05). pSMAD3 increased with dilatation in BAV/UAV aortas (P = 0.01), whereas no relationship with pSMAD2 was observed (P = 0.56). Elastin breaks increased with dilatation in all groups (all P < 0.05). In TAV, elastin degradation correlated with TGFß1, pSMAD2 and pSMAD3 (all P < 0.05), whereas in BAV and UAV aortas, elastin degradation correlated only with pSMAD3 (P = 0.0007). TGFß signaling through SMAD2/SMAD3 contributes to aortic remodeling in TAV, whereas TGFß-independent activation of SMAD3 may underlie aneurysm formation in BAV/UAV aortas. Therefore, SMAD3 should be further investigated as a therapeutic target against ascending aortic dilatation in general, and particularly in BAV/UAV patients.


Assuntos
Doenças da Aorta , Elastina , Doenças da Aorta/patologia , Dilatação , Dilatação Patológica , Doenças das Valvas Cardíacas , Humanos , Proteína Smad3 , Fator de Crescimento Transformador beta , Fatores de Crescimento Transformadores
5.
Eur J Cardiothorac Surg ; 60(2): 333-340, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-33675640

RESUMO

OBJECTIVES: The unicuspid aortic valve (UAV) is a rare cardiac malformation and is associated with the formation of ascending aortic aneurysms. To characterize its associated aortic wall changes, normal and aneurysmatic ascending aortic wall specimens were analysed, focusing on the potential mechanisms of aneurysm formation. Patients with tricuspid aortic valve (TAV) served as controls. METHODS: In a retrospective observational study, 74 specimens (dilated and non-dilated aortas; individuals with UAV and TAV) obtained intraoperatively were studied. Standard stains and immunohistochemical labelling of cleaved caspase-3, cluster of differentiation 31 and endothelial nitric oxide synthase (eNOS) were performed to assess the degree of apoptosis, distribution of eNOS within the aortic wall, smooth muscle cell (SMC) nuclei loss and mucoid extracellular matrix accumulation (MEMA). RESULTS: Deeper ingrowth of vasa vasorum was found in dilated aortas. Interestingly, eNOS was expressed mostly in vasa vasorum. More apoptosis was seen in UAV aortas compared to TAV aortas (P < 0.001). Both UAV and TAV aortas were comparable regarding SMC nuclei loss (P = 0.419). In dilated compared to non-dilated aortas regardless valve morphology SMC nuclei loss was increased (P = 0.005) and more pronounced translamellar MEMA was present (P = 0.011). The highest grade of distribution (P = 0.043) and the highest severity (P = 0.005) regarding MEMA were seen in TAV dilated specimens compared to UAV dilated specimens. CONCLUSIONS: Aneurysms with UAV show increased apoptosis, the role of which is unclear. Strikingly, more severe MEMA was found in TAV aneurysms compared to UAV aneurysms. Thus, UAV-associated aortic wall changes and resulting aneurysm may be less aggressive than aneurysms with TAV.


Assuntos
Aneurisma Aórtico , Doenças das Valvas Cardíacas , Aorta , Valva Aórtica , Humanos
6.
Arterioscler Thromb Vasc Biol ; 41(3): 1179-1190, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33441026

RESUMO

OBJECTIVE: The probability of aortic complications in patients with bicuspid aortic valve is higher in association with aortic regurgitation (AR) compared with aortic stenosis (AS) or normally functioning valves. The objective of this study was to determine whether this is related to the specific characteristics of aneurysmatic dilatation that includes AR or whether AR itself has a negative impact on the aortic wall, independent of aneurysmatic dilatation. Approach and Results: Nondilated aortic specimens were harvested intraoperatively from individuals with tricuspid aortic valves and either AS (n=10) or AR (n=16). For controls, nondilated aortas were harvested during autopsies from individuals with tricuspid aortic valves and no evidence of aortic valve disease (n=10). Histological and immunohistochemical analyses revealed that compared with control aortas, overall medial degeneration was more severe in AR-aortas (P=0.005) but not AS-aortas (P=0.23). This pathological remodeling included mucoid extracellular matrix accumulation (P=0.005), elastin loss (P=0.003), elastin fragmentation (P=0.008), and decreased expression of fibrillin (P=0.003) and collagen (P=0.008). Furthermore, eNOS (endothelial nitric oxide synthase) expression was decreased in the intima (P=0.0008) and in vasa vasorum (P=0.004) of AR-aortas but not AS-aortas (all P>0.05). Likewise, subendothelial apoptosis was increased in AR-aortas (P=0.03) but not AS-aortas (P=0.50). CONCLUSIONS: AR has a negative effect on the nondilated ascending aortic wall. Accordingly, our results support the need for more detailed studies of the aortic wall in relation to aortic valve disease and may ultimately lead to more aggressive clinical monitoring and/or surgical criteria for patients with relevant AR. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Aorta/patologia , Insuficiência da Valva Aórtica/patologia , Remodelação Vascular , Adulto , Idoso , Aorta/metabolismo , Insuficiência da Valva Aórtica/metabolismo , Insuficiência da Valva Aórtica/cirurgia , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Estenose da Valva Aórtica/cirurgia , Apoptose , Estudos de Casos e Controles , Colágeno/metabolismo , Dilatação Patológica/metabolismo , Dilatação Patológica/patologia , Elastina/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Fibrilinas/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo III/metabolismo , Remodelação Vascular/fisiologia , Adulto Jovem
7.
Biochem J ; 461(3): 403-12, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24814368

RESUMO

The bHLH (basic helix-loop-helix) PAS (Per/Arnt/Sim) transcription factor SIM1 (single-minded 1) is important for development and function of regions of the hypothalamus that regulate energy homoeostasis and the feeding response. Low-activity SIM1 variants have been identified in individuals with severe early-onset obesity, but the underlying molecular causes of impaired function are unknown. In the present study we assess a number of human SIM1 variants with reduced activity and determine that impaired function is frequently due to defects in dimerization with the essential partner protein ARNT2 (aryl hydrocarbon nuclear translocator 2). Equivalent variants generated in the highly related protein SIM2 (single-minded 2) produce near-identical impaired function and dimerization defects, indicating that these effects are not unique to the structure of SIM1. On the basis of these data, we predict that other select SIM1 and SIM2 variants reported in human genomic databases will also be deficient in activity, and identify two new low-activity SIM1 variants (V290E and V326F) present in the population. The cumulative data is used in homology modelling to make novel observations about the dimerization interface between the PAS domains of SIM1 and ARNT2, and to define a mutational 'hot-spot' in SIM1 that is critical for protein function.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Núcleo Celular/metabolismo , Modelos Moleculares , Polimorfismo de Nucleotídeo Único , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Translocador Nuclear Receptor Aril Hidrocarboneto/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Núcleo Celular/ultraestrutura , Bases de Dados Genéticas , Células HEK293 , Humanos , Imuno-Histoquímica , Imunoprecipitação , Dados de Sequência Molecular , Mutação , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Alinhamento de Sequência
8.
J Cell Mol Med ; 18(7): 1429-43, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24780093

RESUMO

The enteric nervous system (ENS) has to respond to continuously changing microenvironmental challenges within the gut and is therefore dependent on a neural stem cell niche to keep the ENS functional throughout life. In this study, we hypothesize that this stem cell niche is also affected during inflammation and therefore investigated lipopolysaccharides (LPS) effects on enteric neural stem/progenitor cells (NSPCs). NSPCs were derived from the ENS and cultured under the influence of different LPS concentrations. LPS effects upon proliferation and differentiation of enteric NSPC cultures were assessed using immunochemistry, flow cytometry, western blot, Multiplex ELISA and real-time PCR. LPS enhances the proliferation of enteric NSPCs in a dose-dependent manner. It delays and modifies the differentiation of these cells. The expression of the LPS receptor toll-like receptor 4 on NSPCs could be demonstrated. Moreover, LPS induces the secretion of several cytokines. Flow cytometry data gives evidence for individual subgroups within the NSPC population. ENS-derived NSPCs respond to LPS in maintaining at least partially their stem cell character. In the case of inflammatory disease or trauma where the liberation and exposure to LPS will be increased, the expansion of NSPCs could be a first step towards regeneration of the ENS. The reduced and altered differentiation, as well as the induction of cytokine signalling, demonstrates that the stem cell niche may take part in the LPS-transmitted inflammatory processes in a direct and defined way.


Assuntos
Diferenciação Celular , Sistema Nervoso Entérico/citologia , Lipopolissacarídeos/farmacologia , Células-Tronco Neurais/citologia , Nicho de Células-Tronco/efeitos dos fármacos , Animais , Bactérias , Western Blotting , Proliferação de Células , Células Cultivadas , Sistema Nervoso Entérico/efeitos dos fármacos , Sistema Nervoso Entérico/metabolismo , Citometria de Fluxo , Imunofluorescência , Técnicas Imunoenzimáticas , Camundongos , Camundongos Endogâmicos BALB C , Nestina/genética , Nestina/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
9.
Cell Tissue Res ; 355(1): 35-48, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24253464

RESUMO

The enteric nervous system (ENS) controls and modulates gut motility and responds to food intake and to internal and external stimuli such as toxins or inflammation. Its plasticity is maintained throughout life by neural progenitor cells within the enteric stem cell niche. Granulocyte-colony stimulating factor (G-CSF) is known to act not only on cells of the immune system but also on neurons and neural progenitors in the central nervous system (CNS). Here, we demonstrate, for the first time, that G-CSF receptor is present on enteric neurons and progenitors and that G-CSF plays a role in the expansion and differentiation of enteric neural progenitor cells. Cultured mouse ENS-neurospheres show increased expansion with increased G-CSF concentrations, in contrast to CNS-derived spheres. In cultures from differentiated ENS- and CNS-neurospheres, neurite outgrowth density is enhanced depending on the amount of G-CSF in the culture. G-CSF might be an important factor in the regeneration and differentiation of the ENS and might be a useful tool for the investigation and treatment of ENS disorders.


Assuntos
Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/metabolismo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Células-Tronco Neurais/citologia , Neurogênese , Neurônios/citologia , Animais , Células Cultivadas , Feminino , Fator Estimulador de Colônias de Granulócitos/análise , Granulócitos/patologia , Doença de Hirschsprung/patologia , Humanos , Masculino , Camundongos , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Receptores de Fator Estimulador de Colônias de Granulócitos/análise , Receptores de Fator Estimulador de Colônias de Granulócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...