Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 759: 144313, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33340860

RESUMO

Cover crops play a critical role on conservation and sustainable agriculture due to their well-documented benefits on both soil and crop productivity. Inclusion of legumes (e.g., hairy vetch, Vicia villosa Roth) in the farming system can reduce the nitrogen (N) fertilizer needs for cereals such as maize (Zea mays L.) crop while maintaining or increasing its productivity. The aims of this research study were to quantify the effect of hairy vetch as a cover crop on: i) successor maize yield under varying yield environments (YEs) and fertilizer N rates, and ii) maize N status [N uptake, N nutritional index (NNI), and N fertilizer replacement value (NFRV)] at flowering time. Two field studies were carried out in Southern Brazil under varying YEs. The factors investigated were: YE (low, medium, and high), hairy vetch cover crop (with and without), and fertilizer N rate (0, 60, 120, 180, and 240 kg N ha-1). Under the combination of low YE and low fertilizer N rates (0-60 kg ha-1) with previous vetch, maize displayed the largest yield response and an improvement in its N status. The NNI determined at maize flowering was an efficient index of the vetch effect, increasing delta maize yield response (yield with- minus without-vetch) as the NNI reduced, with more than 10% delta yield response with NNI below 0.85. The NFRV of the hairy vetch represents potential N savings of 151 kg N ha-1 for the LYE, 95 kg N ha-1 for the MYE and from 59 to 45 kg N ha-1 for the HYE depending on the tested fertilizer N rate. The N coming from the legume cover crop in addition to the N fertilization was critical for supplying N to maize and boosting productivity across all YEs.


Assuntos
Nitrogênio , Vicia , Agricultura , Brasil , Fertilizantes/análise , Solo , Zea mays
2.
Pest Manag Sci ; 76(3): 1173-1182, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31587478

RESUMO

BACKGROUND: Site-specific weed management (SSWM) demands higher resolution data for mapping weeds in fields, but the success of this tool relies on the efficiency of optical sensors to discriminate weeds relative to other targets (soils and residues) before cash crop establishment. The objectives of this study were to (i) evaluate the accuracy of spectral bands to differentiate weeds (target) and other non-targets, (ii) access vegetation indices (VIs) to assist in the discrimination process, and (iii) evaluate the accuracy of the thresholds to distinguish weeds relative to non-targets for each VI using training and validation data sets. RESULTS: The main outcomes of this study for effectively distinguishing weeds from other non-targets are (i) training and validation data exhibited similar spectral curves, (ii) red and near-infrared spectral bands presented greater accuracy relative to the other bands, and (iii) the tested VIs increased the discrimination accuracy related to single bands, with an overall accuracy above 95% and a kappa above 0.93. CONCLUSION: This study provided a novel approach to distinguish weeds from other non-targets utilizing a ground-level sensor before cash crop planting based on field spectral data. However, the limitations of this study are related to the spatial resolution to distinguish weeds that might be closer to the one this study presented, and also related to the soil and crop residues conditions at the time of collecting the readings. Overall the results presented contribute to an improved understanding of spectral signatures from different targets (weeds, soils, and residues) before planting time supporting SSWM. © 2019 Society of Chemical Industry.


Assuntos
Plantas Daninhas , Solo
3.
An Acad Bras Cienc ; 91(4): e20190121, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31800705

RESUMO

Successive applications of copper fungicides on vines have resulted in increased copper content in vineyard soils over the years. This high copper content has affected the growth of young vines in eradicated vineyards. Thus, the cultivation of annual species for a few years is an alternative to copper phytostabilization, because it would be a good way to decrease copper availability to plants. The aim of this study was to evaluate the physiological responses of different soybean cultivars to copper concentration increase. Four different soybean cultivars were grown under three copper concentrations: 0.5, 20 and 40 µM in nutrient solution. The main outcomes of this study were: i) Cultivar M 6410 IPRO recorded the highest photosynthetic rate when plants were exposed to 40 µM of copper in the nutrient solution; ii) plants in cultivar M 6410 IPRO accumulated large copper concentrations in their roots although did not decrease the root dry mass, possibly due to the higher superoxide dismutase activity; iii) cultivar DM 5958 RSF IPRO recorded drastically reduced photosynthetic rate and dry mass production due to copper excess. We conclude that each cultivar responded differently to the excess of copper, but none of them showed tolerance to it.


Assuntos
Cobre/farmacologia , Fungicidas Industriais/química , Glycine max/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Solo/química , Glycine max/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...