Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 37(13): 3447-3464, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28209736

RESUMO

Mutations in the Pejvakin (PJVK) gene are thought to cause auditory neuropathy and hearing loss of cochlear origin by affecting noise-induced peroxisome proliferation in auditory hair cells and neurons. Here we demonstrate that loss of pejvakin in hair cells, but not in neurons, causes profound hearing loss and outer hair cell degeneration in mice. Pejvakin binds to and colocalizes with the rootlet component TRIOBP at the base of stereocilia in injectoporated hair cells, a pattern that is disrupted by deafness-associated PJVK mutations. Hair cells of pejvakin-deficient mice develop normal rootlets, but hair bundle morphology and mechanotransduction are affected before the onset of hearing. Some mechanotransducing shorter row stereocilia are missing, whereas the remaining ones exhibit overextended tips and a greater variability in height and width. Unlike previous studies of Pjvk alleles with neuronal dysfunction, our findings reveal a cell-autonomous role of pejvakin in maintaining stereocilia architecture that is critical for hair cell function.SIGNIFICANCE STATEMENT Two missense mutations in the Pejvakin (PJVK or DFNB59) gene were first identified in patients with audiological hallmarks of auditory neuropathy spectrum disorder, whereas all other PJVK alleles cause hearing loss of cochlear origin. These findings suggest that complex pathogenetic mechanisms underlie human deafness DFNB59. In contrast to recent studies, we demonstrate that pejvakin in auditory neurons is not essential for normal hearing in mice. Moreover, pejvakin localizes to stereociliary rootlets in hair cells and is required for stereocilia maintenance and mechanosensory function of the hair bundle. Delineating the site of the lesion and the mechanisms underlying DFNB59 will allow clinicians to predict the efficacy of different therapeutic approaches, such as determining compatibility for cochlear implants.


Assuntos
Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Perda Auditiva Neurossensorial/metabolismo , Perda Auditiva Neurossensorial/patologia , Mecanotransdução Celular , Proteínas/metabolismo , Animais , Linhagem Celular , Audição , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Mutação/genética , Proteínas/genética , Estereocílios/metabolismo , Estereocílios/patologia
2.
Neuroscience ; 344: 380-393, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28089576

RESUMO

Mutations in the Pejvakin (Pjvk) gene cause autosomal recessive hearing loss DFNB59 with audiological features of auditory neuropathy spectrum disorder (ANSD) or cochlear dysfunction. The precise mechanisms underlying the variable clinical phenotypes of DFNB59 remain unclear. Here, we demonstrate that mice with conditional ablation of the Pjvk gene in all sensory hair cells or only in outer hair cells (OHCs) show similar auditory phenotypes with early-onset profound hearing loss. By contrast, loss of Pjvk in adult OHCs causes a slowly progressive hearing loss associated with OHC degeneration and delayed loss of inner hair cells (IHCs), indicating a primary role for pejvakin in regulating OHC function and survival. Consistent with this model, synaptic transmission at the IHC ribbon synapse is largely unaffected in sirtaki mice that carry a C-terminal deletion mutation in Pjvk. Using the C-terminal domain of pejvakin as bait, we identified in a cochlear cDNA library ROCK2, an effector for the small GTPase Rho, and the scaffold protein IQGAP1, involved in modulating actin dynamics. Both ROCK2 and IQGAP1 associate via their coiled-coil domains with pejvakin. We conclude that pejvakin is required to sustain OHC activity and survival in a cell-autonomous manner likely involving regulation of Rho signaling.


Assuntos
Células Ciliadas Auditivas Externas/metabolismo , Perda Auditiva/metabolismo , Proteínas/metabolismo , Animais , Sobrevivência Celular/fisiologia , Progressão da Doença , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Células Ciliadas Auditivas Externas/patologia , Células HeLa , Perda Auditiva/patologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Proteínas/genética , RNA Mensageiro/metabolismo , Deleção de Sequência , Sinapses/metabolismo , Técnicas de Cultura de Tecidos , Proteínas Ativadoras de ras GTPase/metabolismo , Quinases Associadas a rho/metabolismo
3.
PLoS One ; 11(9): e0164078, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27690307

RESUMO

Globally, a body of comparative case-control studies suggests that rheumatoid arthritis (RA) patients are more prone to developing hearing loss (HL). However, experimental evidence that supports this hypothesis is still lacking because the human auditory organ is not readily accessible. The aim of this study was to determine the association between bone damage to the ossicles of the middle ear and HL, using a widely accepted murine model of collagen-induced arthritis (RA mice). Diarthrodial joints in the middle ear were examined with microcomputer tomography (microCT), and hearing function was assessed by auditory brainstem response (ABR). RA mice exhibited significantly decreased hearing sensitivity compared to age-matched controls. Additionally, a significant narrowing of the incudostapedial joint space and an increase in the porosity of the stapes were observed. The absolute latencies of all ABR waves were prolonged, but mean interpeak latencies were not statistically different. The observed bone defects in the middle ear that were accompanied by changes in ABR responses were consistent with conductive HL. This combination suggests that conductive impairment is at least part of the etiology of RA-induced HL in a murine model. Whether the inner ear sustains bone erosion or other pathology, and whether the cochlear nerve sustains pathology await subsequent studies. Considering the fact that certain anti-inflammatories are ototoxic in high doses, monitoring RA patients' auditory function is advisable as part of the effort to ensure their well-being.


Assuntos
Artrite Experimental/patologia , Artrite Reumatoide/patologia , Colágeno/toxicidade , Ossículos da Orelha/patologia , Perda Auditiva/patologia , Animais , Artrite Reumatoide/complicações , Audição , Perda Auditiva/complicações , Camundongos , Camundongos Endogâmicos DBA , Limiar Sensorial , Microtomografia por Raio-X
4.
J Neurosci ; 35(47): 15582-98, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26609154

RESUMO

Disordered protein ubiquitination has been linked to neurodegenerative disease, yet its role in inner ear homeostasis and hearing loss is essentially unknown. Here we show that progressive hearing loss in the ethylnitrosourea-generated mambo mouse line is caused by a mutation in Usp53, a member of the deubiquitinating enzyme family. USP53 contains a catalytically inactive ubiquitin-specific protease domain and is expressed in cochlear hair cells and a subset of supporting cells. Although hair cell differentiation is unaffected in mambo mice, outer hair cells degenerate rapidly after the first postnatal week. USP53 colocalizes and interacts with the tight junction scaffolding proteins TJP1 and TJP2 in polarized epithelial cells, suggesting that USP53 is part of the tight junction complex. The barrier properties of tight junctions of the stria vascularis appeared intact in a biotin tracer assay, but the endocochlear potential is reduced in adult mambo mice. Hair cell degeneration in mambo mice precedes endocochlear potential decline and is rescued in cochlear organotypic cultures in low potassium milieu, indicating that hair cell loss is triggered by extracellular factors. Remarkably, heterozygous mambo mice show increased susceptibility to noise injury at high frequencies. We conclude that USP53 is a novel tight junction-associated protein that is essential for the survival of auditory hair cells and normal hearing in mice, possibly by modulating the barrier properties and mechanical stability of tight junctions. SIGNIFICANCE STATEMENT: Hereditary hearing loss is extremely prevalent in the human population, but many genes linked to hearing loss remain to be discovered. Forward genetics screens in mice have facilitated the identification of genes involved in sensory perception and provided valuable animal models for hearing loss in humans. This involves introducing random mutations in mice, screening the mice for hearing defects, and mapping the causative mutation. Here, we have identified a mutation in the Usp53 gene that causes progressive hearing loss in the mambo mouse line. We demonstrate that USP53 is a catalytically inactive deubiquitinating enzyme and a novel component of tight junctions that is necessary for sensory hair cell survival and inner ear homeostasis.


Assuntos
Progressão da Doença , Perda Auditiva/genética , Perda Auditiva/patologia , Heterozigoto , Mutação/genética , Proteases Específicas de Ubiquitina/genética , Sequência de Aminoácidos , Animais , Cóclea/patologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular
5.
Genetics ; 187(3): 633-41, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21196518

RESUMO

In a pedigree of C57BL/6J mice homozygous for germline mutations induced by the mutagen N-ethyl-N-nitrosourea (ENU), numerous animals died under specific pathogen-free (SPF) conditions between 6 and 7 months of age. Death was caused by nephritic syndrome, which progressed to renal failure associated with focal segmental glomerulosclerosis. To identify the mutation responsible for renal disease, we sequenced genomic DNA from an affected animal using the Applied Biosystems SOLiD sequencing platform. Approximately 74% of the nucleotides comprising coding sequences and splice junctions in the mouse genome were covered at least three times. Within this portion of the genome, 64 discrepancies were flagged as potential homozygous mutations and 82 were flagged as potential heterozygous mutations. A total of 10 of these calls, all homozygous, were validated by capillary sequencing. One of the validated mutations disrupted splicing of the Col4a4 transcript. Genetic mapping by bulk segregation analysis excluded all mutations but this one as the cause of renal disease in Aoba mice. Col4a4 has not been targeted in the mouse, and this strain, named Aoba, represents the first functionally null allele in this species. Our study demonstrates the speed and utility of whole genome sequencing coupled with low resolution meiotic mapping as a means of identifying causative mutations induced by ENU.


Assuntos
Colágeno Tipo IV/genética , Análise Mutacional de DNA/métodos , Etilnitrosoureia/toxicidade , Estudo de Associação Genômica Ampla/métodos , Mutação em Linhagem Germinativa/genética , Insuficiência Renal/genética , Alelos , Animais , Mapeamento Cromossômico , Segregação de Cromossomos , Genoma , Glomerulosclerose Segmentar e Focal/genética , Heterozigoto , Homozigoto , Camundongos , Camundongos Endogâmicos C57BL , Proteinúria/induzido quimicamente , Proteinúria/genética , Sítios de Splice de RNA , Insuficiência Renal/induzido quimicamente
6.
J Cell Biol ; 190(1): 9-20, 2010 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-20624897

RESUMO

Mammals have an astonishing ability to sense and discriminate sounds of different frequencies and intensities. Fundamental for this process are mechanosensory hair cells in the inner ear that convert sound-induced vibrations into electrical signals. The study of genes that are linked to deafness has provided insights into the cell biological mechanisms that control hair cell development and their function as mechanosensors.


Assuntos
Surdez/genética , Surdez/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Audição/genética , Mecanotransdução Celular/genética , Animais , Humanos
7.
Nat Neurosci ; 13(7): 869-76, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20562868

RESUMO

Inner hair cell ribbon synapses indefatigably transmit acoustic information. The proteins mediating their fast vesicle replenishment (hundreds of vesicles per s) are unknown. We found that an aspartate to glycine substitution in the C(2)F domain of the synaptic vesicle protein otoferlin impaired hearing by reducing vesicle replenishment in the pachanga mouse model of human deafness DFNB9. In vitro estimates of vesicle docking, the readily releasable vesicle pool (RRP), Ca(2+) signaling and vesicle fusion were normal. Moreover, we observed postsynaptic excitatory currents of variable size and spike generation. However, mutant active zones replenished vesicles at lower rates than wild-type ones and sound-evoked spiking in auditory neurons was sparse and only partially improved during longer interstimulus intervals. We conclude that replenishment does not match the release of vesicles at mutant active zones in vivo and a sufficient standing RRP therefore cannot be maintained. We propose that otoferlin is involved in replenishing synaptic vesicles.


Assuntos
Surdez/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Audição/fisiologia , Proteínas de Membrana/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/fisiologia , Células Ciliadas Auditivas Internas/ultraestrutura , Proteínas de Membrana/genética , Camundongos , Camundongos Mutantes Neurológicos , Mutação de Sentido Incorreto , Sinapses/metabolismo , Sinapses/ultraestrutura , Vesículas Sinápticas/genética , Vesículas Sinápticas/ultraestrutura
8.
J Neurosci ; 29(50): 15810-8, 2009 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-20016096

RESUMO

Mutations in the head and tail domains of the motor protein myosin VIIA (MYO7A) cause deaf-blindness (Usher syndrome type 1B, USH1B) and nonsyndromic deafness (DFNB2, DFNA11). The head domain binds to F-actin and serves as the MYO7A motor domain, but little is known about the function of the tail domain. In a genetic screen, we have identified polka mice, which carry a mutation (c.5742 + 5G > A) that affects splicing of the MYO7A transcript and truncates the MYO7A tail domain at the C-terminal FERM domain. In the inner ear, expression of the truncated MYO7A protein is severely reduced, leading to defects in hair cell development. In retinal pigment epithelial (RPE) cells, the truncated MYO7A protein is expressed at comparative levels to wild-type protein but fails to associate with and transport melanosomes. We conclude that the C-terminal FERM domain of MYO7A is critical for melanosome transport in RPE cells. Our findings also suggest that MYO7A mutations can lead to tissue-specific effects on protein levels, which may explain why some mutations in MYO7A lead to deafness without retinal impairment.


Assuntos
Alelos , Proteínas do Citoesqueleto/genética , Melanossomas/metabolismo , Miosinas/genética , Epitélio Pigmentado da Retina/metabolismo , Sequência de Aminoácidos , Animais , Percepção Auditiva/genética , Transporte Biológico/genética , Melanossomas/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes Neurológicos , Dados de Sequência Molecular , Miosina VIIa , Estrutura Terciária de Proteína/genética , Epitélio Pigmentado da Retina/citologia , Síndromes de Usher/genética , Síndromes de Usher/metabolismo
9.
Am J Hum Genet ; 85(3): 328-37, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19732867

RESUMO

Hearing loss is the most common form of sensory impairment in humans and is frequently progressive in nature. Here we link a previously uncharacterized gene to hearing impairment in mice and humans. We show that hearing loss in the ethylnitrosourea (ENU)-induced samba mouse line is caused by a mutation in Loxhd1. LOXHD1 consists entirely of PLAT (polycystin/lipoxygenase/alpha-toxin) domains and is expressed along the membrane of mature hair cell stereocilia. Stereociliary development is unaffected in samba mice, but hair cell function is perturbed and hair cells eventually degenerate. Based on the studies in mice, we screened DNA from human families segregating deafness and identified a mutation in LOXHD1, which causes DFNB77, a progressive form of autosomal-recessive nonsyndromic hearing loss (ARNSHL). LOXHD1, MYO3a, and PJVK are the only human genes to date linked to progressive ARNSHL. These three genes are required for hair cell function, suggesting that age-dependent hair cell failure is a common mechanism for progressive ARNSHL.


Assuntos
Proteínas de Transporte/genética , Sequência Conservada , Evolução Molecular , Células Ciliadas Auditivas Externas/patologia , Perda Auditiva/genética , Mutação/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Transporte/química , Cílios/patologia , Cílios/ultraestrutura , Códon de Terminação/genética , Análise Mutacional de DNA , Genes Recessivos , Células Ciliadas Auditivas Externas/ultraestrutura , Perda Auditiva/patologia , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Hibridização In Situ , Camundongos , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , Degeneração Neural/genética , Degeneração Neural/patologia , Estrutura Secundária de Proteína , Gânglio Espiral da Cóclea/patologia , Gânglio Espiral da Cóclea/ultraestrutura
10.
Sci Signal ; 2(85): pt5, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19706872

RESUMO

Mechanotransduction, the conversion of mechanical force into an electrochemical signal, allows living organisms to detect touch, hear, register movement and gravity, and sense changes in cell volume and shape. Hair cells in the vertebrate inner ear are mechanoreceptor cells specialized for the detection of sound and head movement. Each hair cell contains, at the apical surface, rows of stereocilia that are connected by extracellular filaments to form an exquisitely organized bundle. Mechanotransduction channels, localized near the tips of the stereocilia, are gated by the gating spring, an elastic element that is stretched upon stereocilia deflection and mediates rapid channel opening. Components of the mechanotransduction machinery in hair cells have been identified and several are encoded by genes linked to deafness in humans, which indicates that defects in the mechanotransduction machinery are the underlying cause of some forms of hearing impairment.


Assuntos
Células Ciliadas Auditivas/fisiologia , Mecanotransdução Celular/fisiologia , Animais , Proteínas Relacionadas a Caderinas , Caderinas/fisiologia , Caderinas/ultraestrutura , Caenorhabditis elegans/fisiologia , Proteínas de Transporte/fisiologia , Proteínas de Transporte/ultraestrutura , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Células Ciliadas Auditivas/ultraestrutura , Audição/fisiologia , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Perda Auditiva Neurossensorial/fisiopatologia , Ativação do Canal Iônico/fisiologia , Mecanorreceptores/fisiologia , Camundongos , Camundongos Knockout , Camundongos Mutantes Neurológicos , Microscopia Imunoeletrônica , Mapeamento de Interação de Proteínas , Precursores de Proteínas/fisiologia , Precursores de Proteínas/ultraestrutura , Tato/fisiologia
11.
Neuron ; 62(3): 375-87, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19447093

RESUMO

In hair cells, mechanotransduction channels are gated by tip links, the extracellular filaments that consist of cadherin 23 (CDH23) and protocadherin 15 (PCDH15) and connect the stereocilia of each hair cell. However, which molecules mediate cadherin function at tip links is not known. Here we show that the PDZ-domain protein harmonin is a component of the upper tip-link density (UTLD), where CDH23 inserts into the stereociliary membrane. Harmonin domains that mediate interactions with CDH23 and F-actin control harmonin localization in stereocilia and are necessary for normal hearing. In mice expressing a mutant harmonin protein that prevents UTLD formation, the sensitivity of hair bundles to mechanical stimulation is reduced. We conclude that harmonin is a UTLD component and contributes to establishing the sensitivity of mechanotransduction channels to displacement.


Assuntos
Proteínas de Transporte/fisiologia , Extensões da Superfície Celular/fisiologia , Células Ciliadas Auditivas Internas/fisiologia , Audição/fisiologia , Mecanotransdução Celular/fisiologia , Animais , Caderinas/fisiologia , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Ativação do Canal Iônico/fisiologia , Mecanotransdução Celular/genética , Camundongos , Camundongos Mutantes , Mutação , Domínios PDZ , Equilíbrio Postural/fisiologia
12.
Proc Natl Acad Sci U S A ; 106(13): 5252-7, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19270079

RESUMO

Deafness is the most common form of sensory impairment in humans and is frequently caused by single gene mutations. Interestingly, different mutations in a gene can cause syndromic and nonsyndromic forms of deafness, as well as progressive and age-related hearing loss. We provide here an explanation for the phenotypic variability associated with mutations in the cadherin 23 gene (CDH23). CDH23 null alleles cause deaf-blindness (Usher syndrome type 1D; USH1D), whereas missense mutations cause nonsyndromic deafness (DFNB12). In a forward genetic screen, we have identified salsa mice, which suffer from hearing loss due to a Cdh23 missense mutation modeling DFNB12. In contrast to waltzer mice, which carry a CDH23 null allele mimicking USH1D, hair cell development is unaffected in salsa mice. Instead, tip links, which are thought to gate mechanotransduction channels in hair cells, are progressively lost. Our findings suggest that DFNB12 belongs to a new class of disorder that is caused by defects in tip links. We propose that mutations in other genes that cause USH1 and nonsyndromic deafness may also have distinct effects on hair cell development and function.


Assuntos
Caderinas/genética , Surdez/genética , Células Ciliadas Auditivas , Mutação de Sentido Incorreto , Animais , Modelos Animais de Doenças , Mecanotransdução Celular/genética , Camundongos , Síndromes de Usher/genética
13.
Proc Natl Acad Sci U S A ; 105(38): 14609-14, 2008 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-18794526

RESUMO

We have identified a previously unannotated catechol-O-methyltranferase (COMT), here designated COMT2, through positional cloning of a chemically induced mutation responsible for a neurobehavioral phenotype. Mice homozygous for a missense mutation in Comt2 show vestibular impairment, profound sensorineuronal deafness, and progressive degeneration of the organ of Corti. Consistent with this phenotype, COMT2 is highly expressed in sensory hair cells of the inner ear. COMT2 enzymatic activity is significantly reduced by the missense mutation, suggesting that a defect in catecholamine catabolism underlies the auditory and vestibular phenotypes. Based on the studies in mice, we have screened DNA from human families and identified a nonsense mutation in the human ortholog of the murine Comt2 gene that causes nonsyndromic deafness. Defects in catecholamine modification by COMT have been previously implicated in the development of schizophrenia. Our studies identify a previously undescribed COMT gene and indicate an unexpected role for catecholamines in the function of auditory and vestibular sense organs.


Assuntos
Catecol O-Metiltransferase/metabolismo , Surdez/enzimologia , Surdez/genética , Audição/genética , Sequência de Aminoácidos , Animais , Catecol O-Metiltransferase/química , Catecol O-Metiltransferase/genética , Cóclea/enzimologia , Regulação da Expressão Gênica , Células Ciliadas Auditivas Internas/enzimologia , Células Ciliadas Auditivas Externas/enzimologia , Humanos , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Órgão Espiral/enzimologia , Órgão Espiral/patologia , Linhagem , Mutação Puntual
14.
Development ; 135(11): 2043-53, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18434420

RESUMO

The development and function of skeletal muscle depend on molecules that connect the muscle fiber cytoskeleton to the extracellular matrix (ECM). beta1 integrins are ECM receptors in skeletal muscle, and mutations that affect the alpha7beta1 integrin cause myopathy in humans. In mice, beta1 integrins control myoblast fusion, the assembly of the muscle fiber cytoskeleton, and the maintenance of myotendinous junctions (MTJs). The effector molecules that mediate beta1 integrin functions in muscle are not known. Previous studies have shown that talin 1 controls the force-dependent assembly of integrin adhesion complexes and regulates the affinity of integrins for ligands. Here we show that talin 1 is essential in skeletal muscle for the maintenance of integrin attachment sites at MTJs. Mice with a skeletal muscle-specific ablation of the talin 1 gene suffer from a progressive myopathy. Surprisingly, myoblast fusion and the assembly of integrin-containing adhesion complexes at costameres and MTJs advance normally in the mutants. However, with progressive ageing, the muscle fiber cytoskeleton detaches from MTJs. Mechanical measurements on isolated muscles show defects in the ability of talin 1-deficient muscle to generate force. Collectively, our findings show that talin 1 is essential for providing mechanical stability to integrin-dependent adhesion complexes at MTJs, which is crucial for optimal force generation by skeletal muscle.


Assuntos
Músculo Esquelético/metabolismo , Doenças Musculares/genética , Talina/genética , Tendões/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Western Blotting , Matriz Extracelular/metabolismo , Imuno-Histoquímica , Integrina beta1/metabolismo , Integrinas/metabolismo , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Microscopia de Fluorescência , Modelos Genéticos , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sarcolema/metabolismo , Talina/metabolismo , Tendões/patologia , Tendões/ultraestrutura
15.
J Cell Biol ; 180(5): 1037-49, 2008 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-18332223

RESUMO

Skeletal muscle expresses high levels of integrin-linked kinase (ILK), predominantly at myotendinous junctions (MTJs) and costameres. ILK binds the cytoplasmic domain of beta1 integrin and mediates phosphorylation of protein kinase B (PKB)/Akt, which in turn plays a central role during skeletal muscle regeneration. We show that mice with a skeletal muscle-restricted deletion of ILK develop a mild progressive muscular dystrophy mainly restricted to the MTJs with detachment of basement membranes and accumulation of extracellular matrix. Endurance exercise training enhances the defects at MTJs, leads to disturbed subsarcolemmal myofiber architecture, and abrogates phosphorylation of Ser473 as well as phosphorylation of Thr308 of PKB/Akt. The reduction in PKB/Akt activation is accompanied by an impaired insulin-like growth factor 1 receptor (IGF-1R) activation. Coimmunoprecipitation experiments reveal that the beta1 integrin subunit is associated with the IGF-1R in muscle cells. Our data identify the beta1 integrin-ILK complex as an important component of IGF-1R/insulin receptor substrate signaling to PKB/Akt during mechanical stress in skeletal muscle.


Assuntos
Integrina beta1/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Tendões/metabolismo , Animais , Membrana Basal/metabolismo , Membrana Basal/patologia , Sítios de Ligação/genética , Regulação para Baixo/genética , Ativação Enzimática/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Substâncias Macromoleculares/metabolismo , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/fisiopatologia , Fosforilação , Condicionamento Físico Animal , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Sarcolema/metabolismo , Sarcolema/ultraestrutura , Transdução de Sinais/fisiologia , Estresse Mecânico , Tendões/patologia
16.
J Neurosci ; 27(9): 2163-75, 2007 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-17329413

RESUMO

Deafness is the most common form of sensory impairment in the human population and is frequently caused by recessive mutations. To obtain animal models for recessive forms of deafness and to identify genes that control the development and function of the auditory sense organs, we performed a forward genetics screen in mice. We identified 13 mouse lines with defects in auditory function and six lines with auditory and vestibular defects. We mapped several of the affected genetic loci and identified point mutations in four genes. Interestingly, all identified genes are expressed in mechanosensory hair cells and required for their function. One mutation maps to the pejvakin gene, which encodes a new member of the gasdermin protein family. Previous studies have described two missense mutations in the human pejvakin gene that cause nonsyndromic recessive deafness (DFNB59) by affecting the function of auditory neurons. In contrast, the pejvakin allele described here introduces a premature stop codon, causes outer hair cell defects, and leads to progressive hearing loss. We also identified a novel allele of the human pejvakin gene in an Iranian pedigree that is afflicted with progressive hearing loss. Our findings suggest that the mechanisms of pathogenesis associated with pejvakin mutations are more diverse than previously appreciated. More generally, our findings demonstrate that recessive screens in mice are powerful tools for identifying genes that control the development and function of mechanosensory hair cells and cause deafness in humans, as well as generating animal models for disease.


Assuntos
Surdez/genética , Células Ciliadas Auditivas Externas/fisiologia , Proteínas de Neoplasias/metabolismo , Mutação Puntual , Animais , Sequência de Bases , Mapeamento Cromossômico , Surdez/induzido quimicamente , Modelos Animais de Doenças , Etilnitrosoureia/análogos & derivados , Feminino , Genes Recessivos , Testes Genéticos , Células Ciliadas Auditivas Externas/citologia , Células Ciliadas Auditivas Externas/patologia , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutagênicos , Linhagem , Agitação Psicomotora/genética , Alinhamento de Sequência
17.
J Neurosci ; 27(6): 1474-8, 2007 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-17287522

RESUMO

Hearing requires the transduction of vibrational forces by specialized epithelial cells in the cochlea known as hair cells. The human ear contains a finite number of terminally differentiated hair cells that, once lost by noise-induced damage or toxic insult, can never be regenerated. We report here that sphingosine 1-phosphate (S1P) signaling, mainly via activation of its cognate receptor S1P2, is required for the maintenance of vestibular and cochlear hair cells in vivo. Two S1P receptors, S1P2 and S1P3, were found to be expressed in the cochlea by reverse transcription-PCR and in situ hybridization. Mice that are null for both these receptors uniformly display progressive cochlear and vestibular defects with hair cell loss, resulting in complete deafness by 4 weeks of age and, with complete penetrance, balance defects of increasing severity. This study reveals the previously unknown role of S1P signaling in the maintenance of cochlear and vestibular integrity and suggests a means for therapeutic intervention in degenerative hearing loss.


Assuntos
Células Ciliadas Auditivas/citologia , Receptores de Lisoesfingolipídeo/fisiologia , Estimulação Acústica , Envelhecimento/patologia , Animais , Sobrevivência Celular , Cóclea/crescimento & desenvolvimento , Cóclea/metabolismo , Cóclea/patologia , Cóclea/fisiopatologia , Surdez/genética , Surdez/patologia , Comportamento Exploratório , Células Ciliadas Auditivas/fisiologia , Células Ciliadas Vestibulares/citologia , Células Ciliadas Vestibulares/fisiologia , Audição/fisiologia , Hibridização In Situ , Lisofosfolipídeos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Órgão Espiral/metabolismo , Órgão Espiral/patologia , Equilíbrio Postural/fisiologia , Receptores de Lisoesfingolipídeo/biossíntese , Receptores de Lisoesfingolipídeo/deficiência , Receptores de Lisoesfingolipídeo/genética , Reflexo de Sobressalto , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transtornos de Sensação/genética , Transtornos de Sensação/patologia , Esfingosina/análogos & derivados , Receptores de Esfingosina-1-Fosfato , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/patologia , Vestíbulo do Labirinto/metabolismo , Vestíbulo do Labirinto/patologia , Vestíbulo do Labirinto/fisiopatologia
18.
J Neurosci ; 26(7): 2060-71, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16481439

RESUMO

Hair cells of the mammalian inner ear are the mechanoreceptors that convert sound-induced vibrations into electrical signals. The molecular mechanisms that regulate the development and function of the mechanically sensitive organelle of hair cells, the hair bundle, are poorly defined. We link here two gene products that have been associated with deafness and hair bundle defects, protocadherin 15 (PCDH15) and myosin VIIa (MYO7A), into a common pathway. We show that PCDH15 binds to MYO7A and that both proteins are expressed in an overlapping pattern in hair bundles. PCDH15 localization is perturbed in MYO7A-deficient mice, whereas MYO7A localization is perturbed in PCDH15-deficient mice. Like MYO7A, PCDH15 is critical for the development of hair bundles in cochlear and vestibular hair cells, controlling hair bundle morphogenesis and polarity. Cochlear and vestibular hair cells from PCDH15-deficient mice also show defects in mechanotransduction. Together, our findings suggest that PCDH15 and MYO7A cooperate to regulate the development and function of the mechanically sensitive hair bundle.


Assuntos
Caderinas/fisiologia , Dineínas/fisiologia , Células Ciliadas Auditivas/fisiologia , Miosinas/fisiologia , Precursores de Proteínas/fisiologia , Animais , Proteínas Relacionadas a Caderinas , Caderinas/genética , Linhagem Celular , Dineínas/genética , Glutationa Transferase/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Miosina VIIa , Miosinas/genética , Precursores de Proteínas/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
19.
J Neurosci ; 24(37): 8181-91, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15371519

RESUMO

In vitro studies have provided evidence that beta1 integrins in motor neurons promote neurite outgrowth, whereas beta1 integrins in myotubes regulate acetylcholine receptor (AChR) clustering. Surprisingly, using genetic studies in mice, we show here that motor axon outgrowth and neuromuscular junction (NMJ) formation in large part are unaffected when the integrin beta1 gene (Itgb1) is inactivated in motor neurons. In the absence of Itgb1 expression in skeletal muscle, interactions between motor neurons and muscle are defective, preventing normal presynaptic differentiation. Motor neurons fail to terminate their growth at the muscle midline, branch excessively, and develop abnormal nerve terminals. These defects resemble the phenotype of agrin-null mice, suggesting that signaling molecules such as agrin, which coordinate presynaptic and postsynaptic differentiation, are not presented properly to nerve terminals. We conclude that Itgb1 expression in muscle, but not in motor neurons, is critical for NMJ development.


Assuntos
Integrina beta1/fisiologia , Neurônios Motores/fisiologia , Proteínas Musculares/fisiologia , Músculo Esquelético/inervação , Junção Neuromuscular/embriologia , Agrina/farmacologia , Agrina/fisiologia , Animais , Axônios/ultraestrutura , Deleção de Genes , Marcação de Genes , Genes Letais , Integrases/fisiologia , Integrina beta1/genética , Camundongos , Neurônios Motores/química , Hipotonia Muscular/congênito , Hipotonia Muscular/genética , Proteínas Musculares/genética , Músculo Esquelético/química , Proteínas do Tecido Nervoso/fisiologia , Junção Neuromuscular/química , Junção Neuromuscular/patologia , Especificidade de Órgãos , Nervos Periféricos/embriologia , Terminações Pré-Sinápticas/química , Terminações Pré-Sinápticas/fisiologia , Receptores Colinérgicos/análise , Proteínas Recombinantes/farmacologia , Medula Espinal/embriologia , Proteínas Virais/fisiologia
20.
Dev Cell ; 4(5): 673-85, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12737803

RESUMO

The mechanisms that regulate the formation of multinucleated muscle fibers from mononucleated myoblasts are not well understood. We show here that extracellular matrix (ECM) receptors of the beta1 integrin family regulate myoblast fusion. beta1-deficient myoblasts adhere to each other, but plasma membrane breakdown is defective. The integrin-associated tetraspanin CD9 that regulates cell fusion is no longer expressed at the cell surface of beta1-deficient myoblasts, suggesting that beta1 integrins regulate the formation of a protein complex important for fusion. Subsequent to fusion, beta1 integrins are required for the assembly of sarcomeres. Other ECM receptors such as the dystrophin glycoprotein complex are still expressed but cannot compensate for the loss of beta1 integrins, providing evidence that different ECM receptors have nonredundant functions in skeletal muscle fibers.


Assuntos
Fusão Celular , Integrina beta1/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Sarcômeros/metabolismo , Animais , Morte Celular , Divisão Celular , Movimento Celular , Células Cultivadas , Citoesqueleto/metabolismo , Integrina beta1/genética , Camundongos , Microscopia Eletrônica , Músculo Esquelético/citologia , Músculo Esquelético/embriologia , Músculo Esquelético/ultraestrutura , Mioblastos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...