Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37895823

RESUMO

Despite the rapid mass vaccination against COVID-19, the emergence of new SARS-CoV-2 variants of concern, such as omicron, is still a great distress, and new therapeutic options are needed. Bovine lactoferrin (bLf), a multifunctional iron-binding glycoprotein available in unsaturated (apo-bLf) and saturated (holo-bLf) forms, has been shown to exert broad-spectrum antiviral activity against many viruses. In this study, we evaluated the efficacy of both forms of bLf at 1 mg/mL against infection of Vero cells by SARS-CoV-2. As assessed with antiviral assays, an equivalent significant reduction in virus infection by about 70% was observed when either form of bLf was present throughout the infection procedure with the SARS-CoV-2 ancestral or omicron strain. This inhibitory effect seemed to be concentrated during the early steps of virus infection, since a significant reduction in its efficiency by about 60% was observed when apo- or holo-bLf were incubated with the cells before or during virus addition, with no significant difference between the antiviral effects of the distinct iron-saturation states of the protein. However, an ultrastructural analysis of bLf treatment during the early steps of virus infection revealed that holo-bLf was somewhat more effective than apo-bLf in inhibiting virus entry. Together, these data suggest that bLf mainly acts in the early events of SARS-CoV-2 infection and is effective against the ancestral virus as well as its omicron variant. Considering that there are no effective treatments to COVID-19 with tolerable toxicity yet, bLf shows up as a promising candidate.

2.
Biol Chem ; 389(8): 1137-42, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18979637

RESUMO

Lactoferrin (LF) is an iron-binding protein present in several secreted substances, such as milk, and has broad antimicrobial and physiological properties. Because high temperatures may affect protein stability and its functional properties, we investigated the effect of heat on bovine LF structure and stability. The effects of temperatures used during the pasteurization process on LF and its relationship to protein functionality were studied. Conformational changes were monitored using spectroscopic techniques, such as circular dichroism (CD) and fluorescence spectroscopy. The CD data at 70 degrees C showed that LF's secondary structure is drastically and irreversibly affected when the temperature is gradually increased. The same effect is observed when the temperature is gradually raised from 25 degrees C to 105 degrees C and changes are monitored by tryptophan fluorescence emission. We also verified the effects of simulating the pasteurization process; LF remained well structured during the entire process and this result was not time-dependent. Owing to preservation of the secondary structure with changes in the tertiary structure, we thus believe that pasteurization might cause LF to change into an intermediate partially folded state. A better understanding of heat stability is important for the use of LF as a bioactive component in food.


Assuntos
Lactoferrina/química , Temperatura , Motivos de Aminoácidos , Animais , Bovinos , Dicroísmo Circular , Modelos Moleculares , Desnaturação Proteica , Estrutura Terciária de Proteína , Fatores de Tempo
3.
J Biol Chem ; 277(10): 8433-9, 2002 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-11723114

RESUMO

Enveloped animal viruses must undergo membrane fusion to deliver their genome into the host cell. We demonstrate that high pressure inactivates two membrane-enveloped viruses, influenza and Sindbis, by trapping the particles in a fusion-intermediate state. The pressure-induced conformational changes in Sindbis and influenza viruses were followed using intrinsic and extrinsic fluorescence spectroscopy, circular dichroism, and fusion, plaque, and hemagglutination assays. Influenza virus subjected to pressure exposes hydrophobic domains as determined by tryptophan fluorescence and by the binding of bis-8-anilino-1-naphthalenesulfonate, a well established marker of the fusogenic state in influenza virus. Pressure also produced an increase in the fusion activity at neutral pH as monitored by fluorescence resonance energy transfer using lipid vesicles labeled with fluorescence probes. Sindbis virus also underwent conformational changes induced by pressure similar to those in influenza virus, and the increase in fusion activity was followed by pyrene excimer fluorescence of the metabolically labeled virus particles. Overall we show that pressure elicits subtle changes in the whole structure of the enveloped viruses triggering a conformational change that is similar to the change triggered by low pH. Our data strengthen the hypothesis that the native conformation of fusion proteins is metastable, and a cycle of pressure leads to a final state, the fusion-active state, of smaller volume.


Assuntos
Pressão Hidrostática , Orthomyxoviridae/metabolismo , Proteínas Virais de Fusão/química , Fenômenos Fisiológicos Virais , Animais , Linhagem Celular , Embrião de Galinha , Galinhas , Dicroísmo Circular , Cricetinae , Eritrócitos/metabolismo , Hemaglutininas/metabolismo , Concentração de Íons de Hidrogênio , Lipossomos/metabolismo , Fusão de Membrana , Modelos Biológicos , Pressão , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Sindbis virus/metabolismo , Espectrometria de Fluorescência , Temperatura , Termodinâmica , Fatores de Tempo , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...