Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 308(Pt 2): 136346, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36084822

RESUMO

Intrauterine exposure to endocrine disrupting chemicals can interfere with male reproductive development. This can lead to male reproductive disorders such as hypospadias, cryptorchidism and reduced fertility, as well as shorter anogenital distance (AGD) - a biomarker for incomplete androgen-dependent fetal masculinization. However, it remains challenging to predict adverse in vivo outcomes based on in vitro effect patterns for many chemicals. This is a challenge for modern toxicology, which aims to reduce animal testing for chemical safety assessments. To enable the transition towards higher reliance on alternative test methods, we need to better map underlying mechanisms leading to adverse effects. Herein, we have analyzed the transcriptome of the perineum and phallus of male fetal rats and defined the impacts of exposure to an anti-androgenic fungicide, triticonazole. Previously we have shown that developmental exposure to triticonazole can induce short male AGD, but without a marked effect on the transcriptome of the fetal testes. In contrast, we report here significant changes to the transcriptional landscape of the perineum and phallus, including regional differences between these adjacent tissues. This highlights the importance of analyzing the correct tissue when characterizing mechanisms of complex in vivo effect outcomes. Our results provide a rich resource for the spatiotemporal gene networks that are involved in the development of male external genitalia, and that can be disrupted upon exposure to chemicals that prevent normal masculinization of the perineum and phallus. Such data will be critical in the development of novel alternative test methods to determine the endocrine disrupting potential of existing and emerging chemicals.


Assuntos
Disruptores Endócrinos , Fungicidas Industriais , Antagonistas de Androgênios/toxicidade , Animais , Biomarcadores , Ciclopentanos , Disruptores Endócrinos/toxicidade , Fungicidas Industriais/toxicidade , Masculino , Períneo , Ratos , Triazóis
2.
Environ Pollut ; 304: 119242, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35378198

RESUMO

Endocrine disrupting chemicals (EDCs) are a matter of great concern. They are ubiquitous in the environment, are considered harmful to humans and wildlife, yet remain challenging to identify based on current international test guidelines and regulatory frameworks. For a compound to be identified as an EDC within the EU regulatory system, a plausible link between an endocrine mode-of-action and an adverse effect outcome in an intact organism must be established. This requires in-depth knowledge about molecular pathways regulating normal development and function in animals and humans in order to elucidate causes for disease. Although our knowledge about the role of the endocrine system in animal development and function is substantial, it remains challenging to predict endocrine-related disease outcomes in intact animals based on non-animal test data. A main reason for this is that our knowledge about mechanism-of-action are still lacking for essential causal components, coupled with the sizeable challenge of mimicking the complex multi-organ endocrine system by methodological reductionism. Herein, we highlight this challenge by drawing examples from male reproductive toxicity, which is an area that has been at the forefront of EDC research since its inception. We discuss the importance of increased focus on characterizing mechanism-of-action for EDC-induced adverse health effects. This is so we can design more robust and reliable testing strategies using non-animal test methods for predictive toxicology; both to improve chemical risk assessment in general, but also to allow for considerable reduction and replacement of animal experiments in chemicals testing of the 21st Century.


Assuntos
Disruptores Endócrinos , Sistema Endócrino , Animais , Animais Selvagens , Disruptores Endócrinos/toxicidade , Masculino , Reprodução , Medição de Risco/métodos
3.
Front Toxicol ; 3: 730752, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295101

RESUMO

Areola/nipple retention (NR) is an established biomarker for an anti-androgenic mode of action in rat toxicity studies. It is a mandatory measurement under several OECD test guidelines and is typically assessed in combination with anogenital distance (AGD). Both NR and AGD are considered retrospective biomarkers of insufficient androgen signaling during the masculinization programming window in male fetuses. However, there are still aspects concerning NR as a biomarker for endocrine disruption that remains to be clarified. For instance, can NR be regarded a permanent adverse effect? Is it a redundant measurement if AGD is assessed in the same study? Is NR equally sensitive and specific to anti-androgenic chemical substances as a shortening of male AGD? In this review we discuss these and other aspects concerning the use of NR as a biomarker in toxicity studies. We have collected available literature from rat toxicity studies that have reported on NR and synthesized the data in order to draw a clearer picture about the sensitivity and specificity of NR as an effect biomarker for an anti-androgenic mode of action, including comparisons to AGD measurements. We carefully conclude that NR and AGD in rats for the most part display similar sensitivity and specificity, but that there are clear exceptions which support the continued assessment of both endpoints in relevant reproductive toxicity studies. Available literature also support the view that NR in infant male rats signifies a high risk for permanent nipples in adulthood. Finally, the literature suggests that the mechanisms of action leading from a chemical stressor event to either NR or short AGD in male offspring are overlapping with respect to canonical androgen signaling, yet differ with respect to other mechanisms of action.

4.
Toxicol Sci ; 169(1): 303-311, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768126

RESUMO

A short anogenital distance (AGD) in males is a marker for incomplete masculinization and a predictor of adverse effects on male reproductive health. For this reason, AGD is used to assess the endocrine disrupting potential of chemicals for risk assessment purposes. The molecular mechanisms underpinning this chemically induced shortening of the AGD, however, remains unclear. Although it is clear that androgen receptor-mediated signaling is essential, evidence also suggest the involvement of other signaling pathways. This study presents the first global transcriptional profile of the anogenital tissue in male rat fetuses with chemically induced short AGD, also including comparison to normal male and female control animals. The antiandrogenic drug finasteride (10 mg/kg bw/day) was used to induce short AGD by exposing time-mated Sprague Dawley rats at gestation days 7-21. The AGD was 37% shorter in exposed male fetuses compared with control males at gestation day 21. Transcriptomics analysis on anogenital tissues revealed a sexually dimorphic transcriptional profile. More than 350 genes were found to be differentially expressed between the 3 groups. The expression pattern of 4 genes of particular interest (Esr1, Padi2, Wnt2, and Sfrp4) was also tested by RT-qPCR analyses, indicating that estrogen and Wnt2 signaling play a role in the sexually dimorphic development of the anogenital region. Our transcriptomics profiles provide a stepping-stone for future studies aimed at characterizing the molecular events governing development of the anogenital tissues, as well as describing the detailed Adverse Outcome Pathways for short AGD; an accepted biomarker of endocrine effects for chemical risk assessment.


Assuntos
Canal Anal/efeitos dos fármacos , Antagonistas de Androgênios/toxicidade , Disruptores Endócrinos/toxicidade , Feminização/induzido quimicamente , Finasterida/toxicidade , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genitália/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Canal Anal/embriologia , Animais , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Feminização/embriologia , Feminização/genética , Desenvolvimento Fetal , Genitália/embriologia , Idade Gestacional , Masculino , Gravidez , Proteína-Arginina Desiminase do Tipo 2/genética , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Ratos Sprague-Dawley , Proteína Wnt2/genética , Proteína Wnt2/metabolismo
5.
Arch Toxicol ; 93(2): 253-272, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30430187

RESUMO

Male reproductive development is intricately dependent on fetal androgen action. Consequently, disrupted androgen action during fetal life can interfere with the development of the reproductive system resulting in adverse effects on reproductive function later in life. One biomarker used to evaluate fetal androgen action is the anogenital distance (AGD), the distance between the anus and the external genitalia. A short male AGD is strongly associated with genital malformations at birth and reproductive disorders in adulthood. AGD is therefore used as an effect readout in rodent toxicity studies aimed at testing compounds for endocrine activity and anti-androgenic properties, and in human epidemiological studies to correlate fetal exposure to endocrine disrupting chemicals to feminization of new-born boys. In this review, we have synthesized current data related to intrauterine exposure to xenobiotics and AGD measurements. We discuss the utility of AGD as a retrospective marker of in utero anti-androgenicity and as a predictive marker for male reproductive disorders, both with respect to human health and rodent toxicity studies. Finally, we highlight four areas that need addressing to fully evaluate AGD as a biomarker in both a regulatory and clinical setting.


Assuntos
Canal Anal/anatomia & histologia , Genitália Masculina/anatomia & histologia , Efeitos Tardios da Exposição Pré-Natal , Antagonistas de Androgênios/toxicidade , Animais , Disruptores Endócrinos/toxicidade , Feminino , Humanos , Masculino , Gravidez , Roedores , Diferenciação Sexual/efeitos dos fármacos , Testosterona/fisiologia , Testes de Toxicidade , Xenobióticos/toxicidade
6.
Reprod Toxicol ; 82: 25-31, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30268827

RESUMO

Glyphosate has been suggested to be an endocrine disrupting chemical capable of disrupting male reproduction. There are conflicting data, however, with studies reporting effects from exposure to either glyphosate alone or to herbicide formulations, making comparisons difficult. We assessed rat testis histopathology and androgen function following two weeks exposure to either glyphosate at 2.5 and 25 mg/kg bw/day (5x and 50x Acceptable Daily Intake, ADI, respectively), or equivalent high dose of glyphosate in a herbicide formulation; Glyfonova. We observed no significant effects on testes or testosterone synthesis in rats exposed to glyphosate. Limited effects were observed in rats exposed to Glyfonova, with a small upregulation of the steroidogenic genes Cyp11a1 and Cyp17a1. We conclude that glyphosate alone has no effect on adult rat testis at exposure levels up to 25 mg/kg bw/day. Glyfonova induced only minor effects on steroidogenic gene expression, likely caused by additives other than glyphosate.


Assuntos
Glicina/análogos & derivados , Herbicidas/toxicidade , Testículo/efeitos dos fármacos , Animais , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Glicina/toxicidade , Masculino , Ratos Sprague-Dawley , Esteroide 17-alfa-Hidroxilase/genética , Testículo/metabolismo , Testosterona/metabolismo , Glifosato
7.
PLoS One ; 11(6): e0156460, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27327080

RESUMO

Pyruvate dehydrogenase (PDH) plays a key role in the regulation of skeletal muscle substrate utilization. IL-6 is produced in skeletal muscle during exercise in a duration dependent manner and has been reported to increase whole body fatty acid oxidation, muscle glucose uptake and decrease PDHa activity in skeletal muscle of fed mice. The aim of the present study was to examine whether muscle IL-6 contributes to exercise-induced PDH regulation in skeletal muscle. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and floxed littermate controls (control) completed a single bout of treadmill exercise for 10, 60 or 120 min, with rested mice of each genotype serving as basal controls. The respiratory exchange ratio (RER) was overall higher (P<0.05) in IL-6 MKO than control mice during the 120 min of treadmill exercise, while RER decreased during exercise independent of genotype. AMPK and ACC phosphorylation also increased with exercise independent of genotype. PDHa activity was in control mice higher (P<0.05) at 10 and 60 min of exercise than at rest but remained unchanged in IL-6 MKO mice. In addition, PDHa activity was higher (P<0.05) in IL-6 MKO than control mice at rest and 60 min of exercise. Neither PDH phosphorylation nor acetylation could explain the genotype differences in PDHa activity. Together, this provides evidence that skeletal muscle IL-6 contributes to the regulation of PDH at rest and during prolonged exercise and suggests that muscle IL-6 normally dampens carbohydrate utilization during prolonged exercise via effects on PDH.


Assuntos
Interleucina-6/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Piruvato Desidrogenase (Lipoamida)/metabolismo , Descanso , Acetil-CoA Carboxilase/metabolismo , Adenilato Quinase/metabolismo , Animais , Glicemia/metabolismo , Western Blotting , Calorimetria , Respiração Celular , Ácidos Graxos/metabolismo , Glucose-6-Fosfato/metabolismo , Glicogênio/metabolismo , Hexoquinase/metabolismo , Interleucina-6/sangue , Interleucina-6/genética , Lactatos/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação Oxidativa , Fosforilação , Resistência Física , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/metabolismo , Sirtuína 3/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...