Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 82(15): 2779-2796.e10, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35675814

RESUMO

Despite a long appreciation for the role of nonsense-mediated mRNA decay (NMD) in destroying faulty, disease-causing mRNAs and maintaining normal, physiologic mRNA abundance, additional effectors that regulate NMD activity in mammalian cells continue to be identified. Here, we describe a haploid-cell genetic screen for NMD effectors that has unexpectedly identified 13 proteins constituting the AKT signaling pathway. We show that AKT supersedes UPF2 in exon-junction complexes (EJCs) that are devoid of RNPS1 but contain CASC3, defining an unanticipated insulin-stimulated EJC. Without altering UPF1 RNA binding or ATPase activity, AKT-mediated phosphorylation of the UPF1 CH domain at T151 augments UPF1 helicase activity, which is critical for NMD and also decreases the dependence of helicase activity on ATP. We demonstrate that upregulation of AKT signaling contributes to the hyperactivation of NMD that typifies Fragile X syndrome, as exemplified using FMR1-KO neural stem cells derived from induced pluripotent stem cells.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , Proteínas Proto-Oncogênicas c-akt , Animais , Códon sem Sentido/genética , Éxons/genética , Mamíferos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
2.
Sci Transl Med ; 14(651): eabn2375, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35767654

RESUMO

Myotonic dystrophy type 1 (DM1) is a multisystem, autosomal-dominant inherited disorder caused by CTG microsatellite repeat expansions (MREs) in the 3' untranslated region of the dystrophia myotonica-protein kinase (DMPK) gene. Despite its prominence as the most common adult-onset muscular dystrophy, patients with congenital to juvenile-onset forms of DM1 can present with debilitating neurocognitive symptoms along the autism spectrum, characteristic of possible in utero cortical defects. However, the molecular mechanism by which CTG MREs lead to these developmental central nervous system (CNS) manifestations is unknown. Here, we showed that CUG foci found early in the maturation of three-dimensional (3D) cortical organoids from DM1 patient-derived induced pluripotent stem cells (iPSCs) cause hyperphosphorylation of CUGBP Elav-like family member 2 (CELF2) protein. Integrative single-cell RNA sequencing and enhanced cross-linking and immunoprecipitation (eCLIP) analysis revealed that reduced CELF2 protein-RNA substrate interactions results in misregulation of genes critical for excitatory synaptic signaling in glutamatergic neurons, including key components of the methyl-CpG binding protein 2 (MECP2) pathway. Comparisons to MECP2(y/-) cortical organoids revealed convergent molecular and cellular defects such as glutamate toxicity and neuronal loss. Our findings provide evidence suggesting that early-onset DM1 might involve neurodevelopmental disorder-associated pathways and identify N-methyl-d-aspartic acid (NMDA) antagonists as potential treatment avenues for neuronal defects in DM1.


Assuntos
Proteína 2 de Ligação a Metil-CpG , Distrofia Miotônica , Adulto , Proteínas CELF/genética , Proteínas CELF/metabolismo , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Organoides/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Expansão das Repetições de Trinucleotídeos
3.
Crit Rev Biochem Mol Biol ; 56(1): 31-53, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33172304

RESUMO

Dozens of incurable neurological disorders result from expansion of short repeat sequences in both coding and non-coding regions of the transcriptome. Short repeat expansions underlie microsatellite repeat expansion (MRE) disorders including myotonic dystrophy (DM1, CUG50-3,500 in DMPK; DM2, CCTG75-11,000 in ZNF9), fragile X tremor ataxia syndrome (FXTAS, CGG50-200 in FMR1), spinal bulbar muscular atrophy (SBMA, CAG40-55 in AR), Huntington's disease (HD, CAG36-121 in HTT), C9ORF72- amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD and C9-ALS/FTD, GGGGCC in C9ORF72), and many others, like ataxias. Recent research has highlighted several mechanisms that may contribute to pathology in this heterogeneous class of neurological MRE disorders - bidirectional transcription, intranuclear RNA foci, and repeat associated non-AUG (RAN) translation - which are the subject of this review. Additionally, many MRE disorders share similar underlying molecular pathologies that have been recently targeted in experimental and preclinical contexts. We discuss the therapeutic potential of versatile therapeutic strategies that may selectively target disrupted RNA-based processes and may be readily adaptable for the treatment of multiple MRE disorders. Collectively, the strategies under consideration for treatment of multiple MRE disorders include reducing levels of toxic RNA, preventing RNA foci formation, and eliminating the downstream cellular toxicity associated with peptide repeats produced by RAN translation. While treatments are still lacking for the majority of MRE disorders, several promising therapeutic strategies have emerged and will be evaluated within this review.


Assuntos
Esclerose Lateral Amiotrófica/genética , Ataxia/genética , Síndrome do Cromossomo X Frágil/genética , Demência Frontotemporal/genética , Doença de Huntington/genética , Atrofia Muscular Espinal/genética , Distrofia Miotônica/genética , Processamento Pós-Transcricional do RNA/genética , Tremor/genética , Expansão das Repetições de Trinucleotídeos/genética , Esclerose Lateral Amiotrófica/tratamento farmacológico , Animais , Ataxia/tratamento farmacológico , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Demência Frontotemporal/tratamento farmacológico , Humanos , Doença de Huntington/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Atrofia Muscular Espinal/tratamento farmacológico , Distrofia Miotônica/tratamento farmacológico , Neurônios/metabolismo , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/genética , Tremor/tratamento farmacológico
4.
Nat Struct Mol Biol ; 27(10): 989-1000, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32807991

RESUMO

The molecular functions of the majority of RNA-binding proteins (RBPs) remain unclear, highlighting a major bottleneck to a full understanding of gene expression regulation. Here, we develop a plasmid resource of 690 human RBPs that we subject to luciferase-based 3'-untranslated-region tethered function assays to pinpoint RBPs that regulate RNA stability or translation. Enhanced UV-cross-linking and immunoprecipitation of these RBPs identifies thousands of endogenous mRNA targets that respond to changes in RBP level, recapitulating effects observed in tethered function assays. Among these RBPs, the ubiquitin-associated protein 2-like (UBAP2L) protein interacts with RNA via its RGG domain and cross-links to mRNA and rRNA. Fusion of UBAP2L to RNA-targeting CRISPR-Cas9 demonstrates programmable translational enhancement. Polysome profiling indicates that UBAP2L promotes translation of target mRNAs, particularly global regulators of translation. Our tethering survey allows rapid assignment of the molecular activity of proteins, such as UBAP2L, to specific steps of mRNA metabolism.


Assuntos
Proteínas de Transporte/metabolismo , Biossíntese de Proteínas , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas , Sítios de Ligação , Sistemas CRISPR-Cas , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular , Humanos , Luciferases/genética , Luciferases/metabolismo , Fases de Leitura Aberta , Polirribossomos/genética , Polirribossomos/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Raios Ultravioleta
5.
Front Neurosci ; 9: 313, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26483618

RESUMO

The genetic and phenotypic heterogeneity of autism spectrum disorders (ASD) presents a substantial challenge for diagnosis, classification, research, and treatment. Investigations into the underlying molecular etiology of ASD have often yielded mixed and at times opposing findings. Defining the molecular and biochemical underpinnings of heterogeneity in ASD is crucial to our understanding of the pathophysiological development of the disorder, and has the potential to assist in diagnosis and the rational design of clinical trials. In this review, we propose that genetically diverse forms of ASD may be usefully parsed into entities resulting from converse patterns of growth regulation at the molecular level, which lead to the correlates of general synaptic and neural overgrowth or undergrowth. Abnormal brain growth during development is a characteristic feature that has been observed both in children with autism and in mouse models of autism. We review evidence from syndromic and non-syndromic ASD to suggest that entities currently classified as autism may fundamentally differ by underlying pro- or anti-growth abnormalities in key biochemical pathways, giving rise to either excessive or reduced synaptic connectivity in affected brain regions. We posit that this classification strategy has the potential not only to aid research efforts, but also to ultimately facilitate early diagnosis and direct appropriate therapeutic interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...