Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(11): 5624-5633, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38414382

RESUMO

Photocatalytic CO2 reduction offers a promising strategy to produce hydrocarbons without reliance on fossil fuels. Visible light-absorbing colloidal nanomaterials composed of earth-abundant metals suspended in aqueous media are particularly attractive owing to their low-cost, ease of separation, and highly modifiable surfaces. The current study explores such a system by employing water-soluble ZnSe quantum dots and a Co-based molecular catalyst. Water solubilization of the quantum dots is achieved with either carboxylate (3-mercaptopropionic acid) or ammonium (2-aminoethanethiol) functionalized ligands to produce nanoparticles with either negatively or positively-charged surfaces. Photocatalysis experiments are performed to compare the effectiveness of these two surface functionalization strategies on CO2 reduction and ultrafast spectroscopy is used to reveal the underlying photoexcited charge dynamics. We find that the positively-charged quantum dots can support sub-picosecond electron transfer to the carboxylate-based molecular catalyst and also produce >30% selectivity for CO and >170 mmolCO gZnSe-1. However, aggregation reduces activity in approximately one day. In contrast, the negatively-charged quantum dots exhibit >10 ps electron transfer and substantially lower CO selectivity, but they are colloidally stable for days. These results highlight the importance of the quantum dot-catalyst interaction for CO2 reduction. Furthermore, multi-dentate catalyst molecules create a trade-off between photocatalytic efficiency from strong interactions and deleterious aggregation of quantum dot-catalyst assemblies.

2.
Joule ; 7(1): 95-111, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37034575

RESUMO

High capacity polymer dielectrics that operate with high efficiencies under harsh electrification conditions are essential components for advanced electronics and power systems. It is, however, fundamentally challenging to design polymer dielectrics that can reliably withstand demanding temperatures and electric fields, which necessitate the balance of key electronic, electrical and thermal parameters. Herein, we demonstrate that polysulfates, synthesized by sulfur(VI) fluoride exchange (SuFEx) catalysis, another near-perfect click chemistry reaction, serve as high-performing dielectric polymers that overcome such bottlenecks. Free-standing polysulfate thin films from convenient solution processes exhibit superior insulating properties and dielectric stability at elevated temperatures, which are further enhanced when ultrathin (~5 nm) oxide coatings are deposited by atomic layer deposition. The corresponding electrostatic film capacitors display high breakdown strength (>700 MV m-1) and discharged energy density of 8.64 J cm-3 at 150 °C, outperforming state-of-the-art free-standing capacitor films based on commercial and synthetic dielectric polymers and nanocomposites.

3.
ACS Nano ; 16(3): 3715-3722, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35167249

RESUMO

Metal-organic species can be designed to self-assemble in large-scale, atomically defined, supramolecular architectures. A particular example is hybrid quantum wells, where inorganic two-dimensional (2D) planes are separated by organic ligands. The ligands effectively form an intralayer confinement for charge carriers resulting in a 2D electronic structure, even in multilayered assemblies. Air-stable layered transition metal organic chalcogenides have recently been found to host tightly bound 2D excitons with strong optical anisotropy in a bulk matrix. Here, we investigate the excited carrier dynamics in the prototypical metal-organic chalcogenide [AgSePh]∞, disentangling three excitonic resonances by low temperature transient absorption spectroscopy. Our analysis suggests a complex relaxation cascade comprising ultrafast screening and renormalization, interexciton relaxation, and self-trapping of excitons within a few picoseconds (ps). The ps-decay provided by the self-trapping mechanism may be leveraged to unlock the material's potential for ultrafast optoelectronic applications.

4.
Mater Horiz ; 8(1): 197-208, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821298

RESUMO

Two-dimensional (2D) excitons arise from electron-hole confinement along one spatial dimension. Such excitations are often described in terms of Frenkel or Wannier limits according to the degree of exciton spatial localization and the surrounding dielectric environment. In hybrid material systems, such as the 2D perovskites, the complex underlying interactions lead to excitons of an intermediate nature, whose description lies somewhere between the two limits, and a better physical description is needed. Here, we explore the photophysics of a tuneable materials platform where covalently bonded metal-chalcogenide layers are spaced by organic ligands that provide confinement barriers for charge carriers in the inorganic layer. We consider self-assembled, layered bulk silver benzeneselenolate, [AgSePh]∞, and use a combination of transient absorption spectroscopy and ab initio GW plus Bethe-Salpeter equation calculations. We demonstrate that in this non-polar dielectric environment, strongly anisotropic excitons dominate the optical transitions of [AgSePh]∞. We find that the transient absorption measurements at room temperature can be understood in terms of low-lying excitons confined to the AgSe planes with in-plane anisotropy, featuring anisotropic absorption and emission. Finally, we present a pathway to control the exciton behaviour by changing the chalcogen in the material lattice. Our studies unveil unexpected excitonic anisotropies in an unexplored class of tuneable, yet air-stable, hybrid quantum wells, offering design principles for the engineering of an ordered, yet complex dielectric environment and its effect on the excitonic phenomena in such emerging materials.

5.
Nat Commun ; 12(1): 3822, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158488

RESUMO

For two-dimensional (2D) layered semiconductors, control over atomic defects and understanding of their electronic and optical functionality represent major challenges towards developing a mature semiconductor technology using such materials. Here, we correlate generation, optical spectroscopy, atomic resolution imaging, and ab initio theory of chalcogen vacancies in monolayer MoS2. Chalcogen vacancies are selectively generated by in-vacuo annealing, but also focused ion beam exposure. The defect generation rate, atomic imaging and the optical signatures support this claim. We discriminate the narrow linewidth photoluminescence signatures of vacancies, resulting predominantly from localized defect orbitals, from broad luminescence features in the same spectral range, resulting from adsorbates. Vacancies can be patterned with a precision below 10 nm by ion beams, show single photon emission, and open the possibility for advanced defect engineering of 2D semiconductors at the ultimate scale.

6.
Sci Rep ; 11(1): 7656, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828131

RESUMO

Surface plasmons have found a wide range of applications in plasmonic and nanophotonic devices. The combination of plasmonics with three-dimensional photonic crystals has enormous potential for the efficient localization of light in high surface area photoelectrodes. However, the metals traditionally used for plasmonics are difficult to form into three-dimensional periodic structures and have limited optical penetration depth at operational frequencies, which limits their use in nanofabricated photonic crystal devices. The recent decade has seen an expansion of the plasmonic material portfolio into conducting ceramics, driven by their potential for improved stability, and their conformal growth via atomic layer deposition has been established. In this work, we have created three-dimensional photonic crystals with an ultrathin plasmonic titanium nitride coating that preserves photonic activity. Plasmonic titanium nitride enhances optical fields within the photonic electrode while maintaining sufficient light penetration. Additionally, we show that post-growth annealing can tune the plasmonic resonance of titanium nitride to overlap with the photonic resonance, potentially enabling coupled-phenomena applications for these three-dimensional nanophotonic systems. Through characterization of the tuning knobs of bead size, deposition temperature and cycle count, and annealing conditions, we can create an electrically- and plasmonically-active photonic crystal as-desired for a particular application of choice.

7.
Opt Express ; 29(2): 951-960, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726320

RESUMO

Attosecond transient absorption spectroscopy (ATAS) is used to observe photoexcited dynamics with outstanding time resolution. The main experimental challenge of this technique is that high-harmonic generation sources show significant instabilities, resulting in sub-par sensitivity when compared to other techniques. This paper proposes edge-pixel referencing as a means to suppress this noise. Two approaches are introduced: the first is deterministic and uses a correlation analysis, while the second relies on singular value decomposition. Each method is demonstrated and quantified on a noisy measurement taken on WS2 and results in a fivefold increase in sensitivity. The combination of the two methods ensures the fidelity of the procedure and can be implemented on live data collection but also on existing datasets. The results show that edge-referencing methods bring the sensitivity of ATAS near the detector noise floor. An implementation of the post-processing code is provided to the reader.

8.
ACS Nano ; 15(2): 2281-2291, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33336575

RESUMO

Understanding electronic dynamics in multiexcitonic quantum dots (QDs) is important for designing efficient systems useful in high power scenarios, such as solar concentrators and multielectron charge transfer. The multiple charge carriers within a QD can undergo undesired Auger recombination events, which rapidly annihilate carriers on picosecond time scales and generate heat from absorbed photons instead of useful work. Compared to the transfer of multiple electrons, the transfer of multiple holes has proven to be more difficult due to slower hole transfer rates. To probe the competition between Auger recombination and hole transfer in CdSe, CdS, and CdSe/CdS QDs of varying sizes, we synthesized a phenothiazine derivative with optimized functionalities for binding to QDs as a hole accepting ligand and for spectroscopic observation of hole transfer. Transient absorption spectroscopy was used to monitor the photoinduced absorption features from both trapped holes and oxidized ligands under excitation fluences where the averaged initial number of excitons in a QD ranged from ∼1 to 19. We observed fluence-dependent hole transfer kinetics that last around 100 ps longer than the predicted Auger recombination lifetimes, and the transfer of up to 3 holes per QD. Theoretical modeling of the kinetics suggests that binding of hole acceptors introduces trapping states significantly different from those in native QDs passivated with oleate ligands. Holes in these modified trap states have prolonged lifetimes, which promotes the hole transfer efficiency. These results highlight the beneficial role of hole-trapping states in devising hole transfer pathways in QD-based systems under multiexcitonic conditions.

9.
J Am Chem Soc ; 142(47): 19850-19855, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33169994

RESUMO

Pentacene's extraordinary photophysical and electronic properties are highly dependent on intermolecular through-space interactions. Macrocyclic arrangements of chromophores have been shown to provide a high level of control over these interactions, but few examples exist for pentacene due to inherent synthetic challenges. In this work, zirconocene-mediated alkyne coupling was used as a dynamic covalent C-C bond forming reaction to synthesize two geometrically distinct, pentacene-containing macrocycles on a gram scale and in four or fewer steps. Both macrocycles undergo singlet fission in solution with rates that differ by an order of magnitude, while the rate of triplet recombination is approximately the same. This independent modulation of singlet and triplet decay rates is highly desirable for the design of efficient singlet fission materials. The dimeric macrocycle adopts a columnar packing motif in the solid state with large void spaces between pentacene units of the crystal lattice.

10.
ACS Nano ; 14(11): 14769-14778, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33095557

RESUMO

Plasmon-enhanced fluorescence is demonstrated in the vicinity of metal surfaces due to strong local field enhancement. Meanwhile, fluorescence quenching is observed as the spacing between fluorophore molecules and the adjacent metal is reduced below a threshold of a few nanometers. Here, we introduce a technology, placing the fluorophore molecules in plasmonic hotspots between pairs of collapsible nanofingers with tunable gap sizes at sub-nanometer precision. Optimal gap sizes with maximum plasmon enhanced fluorescence are experimentally identified for different dielectric spacer materials. The ultrastrong local field enhancement enables simultaneous detection and characterization of sharp Raman fingerprints in the fluorescence spectra. This platform thus enables in situ monitoring of competing excitation enhancement and emission quenching processes. We systematically investigate the mechanisms behind fluorescence quenching. A quantum mechanical model is developed which explains the experimental data and will guide the future design of plasmon enhanced spectroscopy applications.

11.
Sci Adv ; 6(38)2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32938664

RESUMO

Quantum dot-like single-photon sources in transition metal dichalcogenides (TMDs) exhibit appealing quantum optical properties but lack a well-defined atomic structure and are subject to large spectral variability. Here, we demonstrate electrically stimulated photon emission from individual atomic defects in monolayer WS2 and directly correlate the emission with the local atomic and electronic structure. Radiative transitions are locally excited by sequential inelastic electron tunneling from a metallic tip into selected discrete defect states in the WS2 bandgap. Coupling to the optical far field is mediated by tip plasmons, which transduce the excess energy into a single photon. The applied tip-sample voltage determines the transition energy. Atomically resolved emission maps of individual point defects closely resemble electronic defect orbitals, the final states of the optical transitions. Inelastic charge carrier injection into localized defect states of two-dimensional materials provides a powerful platform for electrically driven, broadly tunable, atomic-scale single-photon sources.

12.
Nanoscale ; 12(37): 19170-19177, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926034

RESUMO

Plasmonic nanostructures serve as optical antennas for concentrating the energy of incoming light in localized hotspots close to their surface. By positioning nanoemitters in the antenna hotspots, energy transfer is enabled, leading to novel hybrid antenna-emitter-systems, where the antenna can be used to manipulate the optical properties of the nano-objects. The challenge remains how to precisely position emitters within the hotspots. We report a self-aligned process based on dry laser ablation of a calixarene that enables the attachment of molecules within the electromagnetic hotspots at the tips of gold nanocones. Within the laser focus, the ablation threshold is exceeded in nanoscale volumes, leading to selective access of the hotspot areas. A first indication of the site-selective functionalization process is given by attaching fluorescently labelled proteins to the nanocones. In a second example, Raman-active molecules are selectively attached only to nanocones that were previously exposed in the laser focus, which is verified by surface enhanced Raman spectroscopy. Enabling selective functionalization is an important prerequisite e.g. for preparing single photon sources for quantum optical technologies, or multiplexed Raman sensing platforms.

13.
Nano Lett ; 20(9): 6364-6371, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786946

RESUMO

Free-standing ultrathin (∼2 nm) films of several oxides (Al2O3,TiO2, and others) have been developed, which are mechanically robust and transparent to electrons with Ekin ≥ 200 eV and to photons. We demonstrate their applicability in environmental X-ray photoelectron and infrared spectroscopy for molecular level studies of solid-gas (≥1 bar) and solid-liquid interfaces. These films act as membranes closing a reaction cell and as substrates and electrodes for electrochemical reactions. The remarkable properties of such ultrathin oxides membranes enable atomic/molecular level studies of interfacial phenomena, such as corrosion, catalysis, electrochemical reactions, energy storage, geochemistry, and biology, in a broad range of environmental conditions.

14.
ACS Nano ; 14(6): 6999-7007, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32459460

RESUMO

Förster resonant energy transfer (FRET)-mediated exciton diffusion through artificial nanoscale building block assemblies could be used as an optoelectronic design element to transport energy. However, so far, nanocrystal (NC) systems supported only diffusion lengths of 30 nm, which are too small to be useful in devices. Here, we demonstrate a FRET-mediated exciton diffusion length of 200 nm with 0.5 cm2/s diffusivity through an ordered, two-dimensional assembly of cesium lead bromide perovskite nanocrystals (CsPbBr3 PNCs). Exciton diffusion was directly measured via steady-state and time-resolved photoluminescence (PL) microscopy, with physical modeling providing deeper insight into the transport process. This exceptionally efficient exciton transport is facilitated by PNCs' high PL quantum yield, large absorption cross section, and high polarizability, together with minimal energetic and geometric disorder of the assembly. This FRET-mediated exciton diffusion length matches perovskites' optical absorption depth, thus enabling the design of device architectures with improved performances and providing insight into the high conversion efficiencies of PNC-based optoelectronic devices.

15.
Phys Rev Lett ; 123(7): 076801, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31491121

RESUMO

Structural defects in 2D materials offer an effective way to engineer new material functionalities beyond conventional doping. We report on the direct experimental correlation of the atomic and electronic structure of a sulfur vacancy in monolayer WS_{2} by a combination of CO-tip noncontact atomic force microscopy and scanning tunneling microscopy. Sulfur vacancies, which are absent in as-grown samples, were deliberately created by annealing in vacuum. Two energetically narrow unoccupied defect states followed by vibronic sidebands provide a unique fingerprint of this defect. Direct imaging of the defect orbitals, together with ab initio GW calculations, reveal that the large splitting of 252±4 meV between these defect states is induced by spin-orbit coupling.

16.
ACS Nano ; 13(9): 10520-10534, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31393700

RESUMO

Control of impurity concentrations in semiconducting materials is essential to device technology. Because of their intrinsic confinement, the properties of two-dimensional semiconductors such as transition metal dichalcogenides (TMDs) are more sensitive to defects than traditional bulk materials. The technological adoption of TMDs is dependent on the mitigation of deleterious defects and guided incorporation of functional foreign atoms. The first step toward impurity control is the identification of defects and assessment of their electronic properties. Here, we present a comprehensive study of point defects in monolayer tungsten disulfide (WS2) grown by chemical vapor deposition using scanning tunneling microscopy/spectroscopy, CO-tip noncontact atomic force microscopy, Kelvin probe force spectroscopy, density functional theory, and tight-binding calculations. We observe four different substitutional defects: chromium (CrW) and molybdenum (MoW) at a tungsten site, oxygen at sulfur sites in both top and bottom layers (OS top/bottom), and two negatively charged defects (CD type I and CD type II). Their electronic fingerprints unambiguously corroborate the defect assignment and reveal the presence or absence of in-gap defect states. CrW forms three deep unoccupied defect states, two of which arise from spin-orbit splitting. The formation of such localized trap states for CrW differs from the MoW case and can be explained by their different d shell energetics and local strain, which we directly measured. Utilizing a tight-binding model the electronic spectra of the isolectronic substitutions OS and CrW are mimicked in the limit of a zero hopping term and infinite on-site energy at a S and W site, respectively. The abundant CDs are negatively charged, which leads to a significant band bending around the defect and a local increase of the contact potential difference. In addition, CD-rich domains larger than 100 nm are observed, causing a work function increase of 1.1 V. While most defects are electronically isolated, we also observed hybrid states formed between CrW dimers. The important role of charge localization, spin-orbit coupling, and strain for the formation of deep defect states observed at substitutional defects in WS2 as reported here will guide future efforts of targeted defect engineering and doping of TMDs.

17.
Sci Adv ; 5(5): eaav8141, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31172026

RESUMO

One-dimensional (1D) nanomaterials with highly anisotropic optoelectronic properties are key components in energy harvesting, flexible electronics, and biomedical imaging devices. 3D patterning methods that precisely assemble nanowires with locally controlled composition and orientation would enable new optoelectronic device designs. As an exemplar, we have created and 3D-printed nanocomposite inks composed of brightly emitting colloidal cesium lead halide perovskite (CsPbX3, X = Cl, Br, and I) nanowires suspended in a polystyrene-polyisoprene-polystyrene block copolymer matrix. The nanowire alignment is defined by the programmed print path, resulting in optical nanocomposites that exhibit highly polarized absorption and emission properties. Several devices have been produced to highlight the versatility of this method, including optical storage, encryption, sensing, and full-color displays.

18.
Science ; 363(6432): 1199-1202, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30872520

RESUMO

A variety of optical applications rely on the absorption and reemission of light. The quantum yield of this process often plays an essential role. When the quantum yield deviates from unity by significantly less than 1%, applications such as luminescent concentrators and optical refrigerators become possible. To evaluate such high performance, we develop a measurement technique for luminescence efficiency with sufficient accuracy below one part per thousand. Photothermal threshold quantum yield is based on the quantization of light to minimize overall measurement uncertainty. This technique is used to guide a procedure capable of making ensembles of near-unity emitting cadmium selenide/cadmium sulfide (CdSe/CdS) core-shell quantum dots. We obtain a photothermal threshold quantum yield luminescence efficiency of 99.6 ± 0.2%, indicating nearly complete suppression of nonradiative decay channels.

19.
Sci Rep ; 9(1): 2768, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808883

RESUMO

Materials for nanophotonic devices ideally combine ease of deposition, very high refractive index, and facile pattern formation through lithographic templating and/or etching. In this work, we present a scalable method for producing high refractive index WS2 layers by chemical conversion of WO3 synthesized via atomic layer deposition (ALD). These conformal nanocrystalline thin films demonstrate a surprisingly high index of refraction (n > 3.9), and structural fidelity compatible with lithographically defined features down to ~10 nm. Although this process yields highly polycrystalline films, the optical constants are in agreement with those reported for single crystal bulk WS2. Subsequently, we demonstrate three photonic structures - first, a two-dimensional hole array made possible by patterning and etching an ALD WO3 thin film before conversion, second, an analogue of the 2D hole array first patterned into fused silica before conformal coating and conversion, and third, a three-dimensional inverse opal photonic crystal made by conformal coating of a self-assembled polystyrene bead template. These results can be trivially extended to other transition metal dichalcogenides, thus opening new opportunities for photonic devices based on high refractive index materials.

20.
ACS Nano ; 13(2): 1284-1291, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30645100

RESUMO

Two-dimensional materials with engineered composition and structure will provide designer materials beyond conventional semiconductors. However, the potentials of defect engineering remain largely untapped, because it hinges on a precise understanding of electronic structure and excitonic properties, which are not yet predictable by theory alone. Here, we utilize correlative, nanoscale photoemission spectroscopy to visualize how local introduction of defects modifies electronic and excitonic properties of two-dimensional materials at the nanoscale. As a model system, we study chemical vapor deposition grown monolayer WS2, a prototypical, direct gap, two-dimensional semiconductor. By cross-correlating nanoscale angle-resolved photoemission spectroscopy, core level spectroscopy, and photoluminescence, we unravel how local variations in defect density influence electronic structure, lateral band alignment, and excitonic phenomena in synthetic WS2 monolayers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...