Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 558(7710): 445-448, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899448

RESUMO

Haematopoietic stem and progenitor cells (HSPCs) require a specific microenvironment, the haematopoietic niche, which regulates HSPC behaviour1,2. The location of this niche varies across species, but the evolutionary pressures that drive HSPCs to different microenvironments remain unknown. The niche is located in the bone marrow in adult mammals, whereas it is found in other locations in non-mammalian vertebrates, for example, in the kidney marrow in teleost fish. Here we show that a melanocyte umbrella above the kidney marrow protects HSPCs against ultraviolet light in zebrafish. Because mutants that lack melanocytes have normal steady-state haematopoiesis under standard laboratory conditions, we hypothesized that melanocytes above the stem cell niche protect HSPCs against ultraviolet-light-induced DNA damage. Indeed, after ultraviolet-light irradiation, unpigmented larvae show higher levels of DNA damage in HSPCs, as indicated by staining of cyclobutane pyrimidine dimers and have reduced numbers of HSPCs, as shown by cmyb (also known as myb) expression. The umbrella of melanocytes associated with the haematopoietic niche is highly evolutionarily conserved in aquatic animals, including the sea lamprey, a basal vertebrate. During the transition from an aquatic to a terrestrial environment, HSPCs relocated into the bone marrow, which is protected from ultraviolet light by the cortical bone around the marrow. Our studies reveal that melanocytes above the haematopoietic niche protect HSPCs from ultraviolet-light-induced DNA damage in aquatic vertebrates and suggest that during the transition to terrestrial life, ultraviolet light was an evolutionary pressure affecting the location of the haematopoietic niche.


Assuntos
Evolução Biológica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos da radiação , Melanócitos/citologia , Melanócitos/efeitos da radiação , Nicho de Células-Tronco/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Animais , Organismos Aquáticos/classificação , Citoproteção/efeitos da radiação , Dano ao DNA/efeitos da radiação , Rim , Mutação , Petromyzon/classificação , Filogenia , Dímeros de Pirimidina/efeitos da radiação , Nicho de Células-Tronco/fisiologia , Peixe-Zebra/classificação , Peixe-Zebra/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-24368134

RESUMO

The alligator gar (Atractosteus spatula) is a primitive euryhaline fish, found primarily in estuaries and freshwater drainages associated with the northern Gulf of Mexico. The extent of its hypo-osmotic regulatory abilities is not well understood. In order to determine how salinity affects growth rates and ionic and osmoregulation, juvenile alligator gar (330 days after hatch; 185 g) were exposed to 4 different salinities (0, 8, 16, and 24 ppt) for a 30-day period. Specific growth rate, plasma osmolality and ion concentrations, gill and gastrointestinal tract Na(+), K(+)-ATPase activities, and drinking rate were compared. Juvenile alligator gar were able to tolerate hyperosmotic salinities up to 24 ppt for a 30 day period, albeit with decreased growth resulting largely from decreased food consumption. Plasma osmolality and ionic concentrations were elevated in hyperosmotic salinities, and drinking rates and gastrointestinal tract Na(+), K(+)-ATPase activities increased, particularly in the pyloric caeca, presumably the primary location of water absorption. Therefore, juvenile alligator gar<1 year of age are capable of prolonged exposure to hyperosmotic salinities, but, based on the inference of these data, require access to lower salinities for long-term survival.


Assuntos
Peixes/crescimento & desenvolvimento , Equilíbrio Hidroeletrolítico , Animais , Ingestão de Líquidos , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Brânquias/enzimologia , Concentração Osmolar , Fosfatos/sangue , Potássio/sangue , Salinidade , ATPase Trocadora de Sódio-Potássio/metabolismo , Estresse Fisiológico
3.
J Am Chem Soc ; 134(12): 5586-97, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22404133

RESUMO

Chlorine K-edge X-ray absorption spectroscopy (XAS) and ground-state and time-dependent hybrid density functional theory (DFT) were used to probe the electronic structures of O(h)-MCl(6)(2-) (M = Ti, Zr, Hf, U) and C(4v)-UOCl(5)(-), and to determine the relative contributions of valence 3d, 4d, 5d, 6d, and 5f orbitals in M-Cl bonding. Spectral interpretations were guided by time-dependent DFT calculated transition energies and oscillator strengths, which agree well with the experimental XAS spectra. The data provide new spectroscopic evidence for the involvement of both 5f and 6d orbitals in actinide-ligand bonding in UCl(6)(2-). For the MCl(6)(2-), where transitions into d orbitals of t(2g) symmetry are spectroscopically resolved for all four complexes, the experimentally determined Cl 3p character per M-Cl bond increases from 8.3(4)% (TiCl(6)(2-)) to 10.3(5)% (ZrCl(6)(2-)), 12(1)% (HfCl(6)(2-)), and 18(1)% (UCl(6)(2-)). Chlorine K-edge XAS spectra of UOCl(5)(-) provide additional insights into the transition assignments by lowering the symmetry to C(4v), where five pre-edge transitions into both 5f and 6d orbitals are observed. For UCl(6)(2-), the XAS data suggest that orbital mixing associated with the U 5f orbitals is considerably lower than that of the U 6d orbitals. For both UCl(6)(2-) and UOCl(5)(-), the ground-state DFT calculations predict a larger 5f contribution to bonding than is determined experimentally. These findings are discussed in the context of conventional theories of covalent bonding for d- and f-block metal complexes.

4.
Inorg Chem ; 50(20): 9838-48, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-21761890

RESUMO

Uranium compounds supported by redox-active α-diimine ligands, which have methyl groups on the ligand backbone and bulky mesityl substituents on the nitrogen atoms {(Mes)DAB(Me) = [ArN═C(Me)C(Me)═NAr], where Ar = 2,4,6-trimethylphenyl (Mes)}, are reported. The addition of 2 equiv of (Mes)DAB(Me), 3 equiv of KC(8), and 1 equiv of UI(3)(THF)(4) produced the bis(ligand) species ((Mes)DAB(Me))(2)U(THF) (1). The metallocene derivative, Cp(2)U((Mes)DAB(Me)) (2), was generated by the addition of an equimolar ratio of (Mes)DAB(Me) and KC(8) to Cp(3)U. The bond lengths in the molecular structure of both species confirm that the α-diimine ligands have been doubly reduced to form ene-diamide ligands. Characterization by electronic absorption spectroscopy shows weak, sharp transitions in the near-IR region of the spectrum and, in combination with the crystallographic data, is consistent with the formulation that tetravalent uranium ions are present and supported by ene-diamide ligands. This interpretation was verified by U L(III)-edge X-ray absorption near-edge structure (XANES) spectroscopy and by variable-temperature magnetic measurements. The magnetic data are consistent with singlet ground states at low temperature and variable-temperature dependencies that would be expected for uranium(IV) species. However, both complexes exhibit low magnetic moments at room temperature, with values of 1.91 and 1.79 µ(B) for 1 and 2, respectively. Iodomethane was used to test the reactivity of 1 and 2 for multielectron transfer. While 2 showed no reactivity with CH(3)I, the addition of 2 equiv of iodomethane to 1 resulted in the formation of a uranium(IV) monoiodide species, ((Mes)DAB(Me))((Mes)DAB(Me2))UI {3; (Mes)DAB(Me2) = [ArN═C(Me)C(Me(2))NAr]}, which was characterized by single-crystal X-ray diffraction and U M(4)- and M(5)-edge XANES. Confirmation of the structure was also attained by deuterium labeling studies, which showed that a methyl group was added to the ene-diamide ligand carbon backbone.


Assuntos
Iminas/química , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Urânio/química , Cristalografia por Raios X , Transporte de Elétrons , Ligantes , Espectroscopia de Ressonância Magnética , Magnetometria , Modelos Moleculares , Conformação Molecular , Espectroscopia por Absorção de Raios X
5.
Inorg Chem ; 47(12): 5365-71, 2008 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-18470982

RESUMO

For 3-5d transition-metal ions, the (C5R5)2MCl2 (R = H, Me for M = Ti, Zr, Hf) bent metallocenes represent a series of compounds that have been central in the development of organometallic chemistry and homogeneous catalysis. Here, we evaluate how changes in the principal quantum number for the group IV (C5H5)2MCl2 (M = Ti, Zr, Hf; 1- 3, respectively) complexes affects the covalency of M-Cl bonds through application of Cl K-edge X-ray Absorption Spectroscopy (XAS). Spectra were recorded on solid samples dispersed as a thin film and encapsulated in polystyrene matrices to reliably minimize problems associated with X-ray self-absorption. The data show that XAS pre-edge intensities can be quantitatively reproduced when analytes are encapsulated in polystyrene. Cl K-edge XAS data show that covalency in M-Cl bonding changes in the order Ti > Zr > Hf and demonstrates that covalency slightly decreases with increasing principal quantum number in 1-3. The percent Cl 3p character was experimentally determined to be 26, 23, and 18% per M-Cl bond in the thin-film samples for 1-3 respectively and was indistinguishable from the polystyrene samples, which analyzed as 25, 25, and 19% for 1-3, respectively. To aid in interpretation of Cl K-edge XAS, 1-3 were also analyzed by ground-state and time-dependent density functional theory (TD-DFT) calculations. The calculated spectra and percent chlorine character are in close agreement with the experimental observations, and show 20, 18, and 17% Cl 3p character per M-Cl bond for 1-3, respectively. Polystyrene matrix encapsulation affords a convenient method to safely contain radioactive samples to extend our studies to include actinide elements, where both 5f and 6d orbitals are expected to play a role in M-Cl bonding and where transition assignments must rely on accurate theoretical calculations.

6.
Chem Commun (Camb) ; (47): 5919-21, 2005 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-16317475

RESUMO

Benzimidazolines (dihydrobenzimidazoles) are shown for the first time to eliminate hydrogen (H2) by catalyzed reaction with protic compounds.

7.
Inorg Chem ; 42(7): 2410-7, 2003 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-12665378

RESUMO

The reactivity of [MoS(4)](2-) (1) toward PMe(3) was explored in the presence and absence of proton donors. Whereas MeCN solutions of (Et(4)N)(2)[MoS(4)] and PMe(3) are stable, in the presence of H(2)S such solutions catalyze formation of H(2) and SPMe(3). Addition of NH(4+) to such solutions afforded MoS(2)(PMe(3))(4) (2), which can be prepared directly from (NH(4))(2)[1]. Compound 2 is reactive toward thiols via a process proposed to involve the initial dissociation of one PMe(3) ligand, a hypothesis supported by the relative inertness of trans-MoS(2)(dmpe)(2). Benzene solutions of 2 react with EtSH to give Mo(2)(mu-S)(mu-SH)(PMe(3))(4)(SEt)(3) (3Et). Analogous reactions with thiocresol (MeC(6)H(4)SH) and H(2)S gave Mo(2)(mu-S)(mu-SH)(PMe(3))(4)(SR)(3) (R = tol, H). Crystallographic analyses of 3Et, 3H, and 3tol indicate dinuclear species with seven terminal ligands and a Mo(2)(mu-SR)(mu-S) core (r(Mo)(-)(Mo) = 2.748(1) A). From reaction mixtures leading to 3Et from 2, we obtained the intermediate Mo(IV)(2)(mu-S)(2)(SEt)(4)(PMe(3))(2) (4), an edge-shared bis(trigonal pyramidal) structure. Compounds 3H and 3Et react further with H(2)S to give Mo(4)(mu(2)-S)(4)(mu(3)-S)(2)(PMe(3))(6)(SH)(2) (5H) and Mo(4)(mu(2)-S)(4)(mu(3)-S)(2)(PMe(3))(6)(SEt)(2) (5Et), respectively. Analogously, W(4)(mu(2)-S)(4)(mu(3)-S)(2)(PMe(3))(6)(SH)(2) was synthesized from a methanol solution of (NH(4))(2)WS(4) with H(2)S and PMe(3). A highly accurate crystallographic analysis of (NH(4))(2)MoS(4) (R(1) = 0.0193) indicates several weak NH.S interactions.

8.
Angew Chem Int Ed Engl ; 40(12): 2351-2353, 2001 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-11433519
9.
Angew Chem Int Ed Engl ; 40(12): 2351-2353, 2001 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29711838

RESUMO

Not a poison! In contrast to the high reactivity of 1, the corresponding trihydride [ReH3 (PMe3 )4 ] is kinetically inert. Thus, the usual view that sulfur poisons catalysts is clearly inappropriate in this case. The catalytic properties of 1 result from its difunctional nature with both protic (SH) and hydridic (ReH) sites; these sites communicate by an intramolecular exchange process (see scheme; X=OMe, SH).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...