Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 153(3): 034107, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32716189

RESUMO

We present NECI, a state-of-the-art implementation of the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) algorithm, a method based on a stochastic application of the Hamiltonian matrix on a sparse sampling of the wave function. The program utilizes a very powerful parallelization and scales efficiently to more than 24 000 central processing unit cores. In this paper, we describe the core functionalities of NECI and its recent developments. This includes the capabilities to calculate ground and excited state energies, properties via the one- and two-body reduced density matrices, as well as spectral and Green's functions for ab initio and model systems. A number of enhancements of the bare FCIQMC algorithm are available within NECI, allowing us to use a partially deterministic formulation of the algorithm, working in a spin-adapted basis or supporting transcorrelated Hamiltonians. NECI supports the FCIDUMP file format for integrals, supplying a convenient interface to numerous quantum chemistry programs, and it is licensed under GPL-3.0.

2.
Phys Rev Lett ; 118(17): 176403, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28498711

RESUMO

We reformulate the projected imaginary-time evolution of the full configuration interaction quantum Monte Carlo method in terms of a Lagrangian minimization. This naturally leads to the admission of polynomial complex wave function parametrizations, circumventing the exponential scaling of the approach. While previously these functions have traditionally inhabited the domain of variational Monte Carlo approaches, we consider recent developments for the identification of deep-learning neural networks to optimize this Lagrangian, which can be written as a modification of the propagator for the wave function dynamics. We demonstrate this approach with a form of tensor network state, and use it to find solutions to the strongly correlated Hubbard model, as well as its application to a fully periodic ab initio graphene sheet. The number of variables which can be simultaneously optimized greatly exceeds alternative formulations of variational Monte Carlo methods, allowing for systematic improvability of the wave function flexibility towards exactness for a number of different forms, while blurring the line between traditional variational and projector quantum Monte Carlo approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...