Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 58(9): 1284-1297, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35014639

RESUMO

Using molecular self-assembly, supramolecular chemists can create Gigadalton-structures with angstrom precision held together by non-covalent interactions. However, despite relying on the same molecular toolbox for self-assembly, these synthetic structures lack the complexity and sophistication of biological assemblies. Those assemblies are non-equilibrium structures that rely on the constant consumption of energy transduced from the hydrolysis of chemical fuels like ATP and GTP, which endows them with dynamic properties, e.g., temporal and spatial control and self-healing ability. Thus, to synthesize life-like materials, we have to find a reaction cycle that converts chemical energy to regulate self-assembly. We and others recently found that this can be done by a reaction cycle that hydrates carbodiimides. This feature article aims to provide an overview of how the energy transduced from carbodiimide hydration can alter the function of molecules and regulate molecular assemblies. The goal is to offer the reader design considerations for carbodiimide-driven reaction cycles to create a desired morphology or function of the assembly and ultimately to push chemically fueled self-assembly further towards the bottom-up synthesis of life.

2.
J Phys Chem B ; 125(49): 13542-13551, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34851128

RESUMO

We investigate active droplets that form at the expense of a chemical fuel in aqueous buffer and vanish autonomously. Dynamic light scattering reveals the scattered intensity, the hydrodynamic radius, and the width of the size distribution with high precision as well as high temporal and spatial resolutions. Comparing the resulting time-dependent behavior of the droplet characteristics with the time-dependent concentration of the anhydrides, the roles of the chemical reaction cycle and of colloidal growth processes are elucidated. The droplet sizes and lifetimes depend strongly on the hydrophobicity of the precursor, and the growth rate is found to correlate with the deactivation rate of the product.


Assuntos
Água , Difusão Dinâmica da Luz , Interações Hidrofóbicas e Hidrofílicas
3.
Chem Sci ; 12(29): 9969-9976, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34349967

RESUMO

There is an increasing demand for transient materials with a predefined lifetime like self-erasing temporary electronic circuits or transient biomedical implants. Chemically fueled materials are an example of such materials; they emerge in response to chemical fuel, and autonomously decay as they deplete it. However, these materials suffer from a slow, typically first order decay profile. That means that over the course of the material's lifetime, its properties continuously change until it is fully decayed. Materials that have a sharp on-off response are self-immolative ones. These degrade rapidly after an external trigger through a self-amplifying decay mechanism. However, self-immolative materials are not autonomous; they require a trigger. We introduce here materials with the best of both, i.e., materials based on chemically fueled emulsions that are also self-immolative. The material has a lifetime that can be predefined, after which it autonomously and rapidly degrades. We showcase the new material class with self-expiring labels and drug-delivery platforms with a controllable burst-release.

4.
Chem Sci ; 12(21): 7554-7560, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-34163846

RESUMO

Non-equilibrium, fuel-driven reaction cycles serve as model systems of the intricate reaction networks of life. Rich and dynamic behavior is observed when reaction cycles regulate assembly processes, such as phase separation. However, it remains unclear how the interplay between multiple reaction cycles affects the success of emergent assemblies. To tackle this question, we created a library of molecules that compete for a common fuel that transiently activates products. Often, the competition for fuel implies that a competitor decreases the lifetime of these products. However, in cases where the transient competitor product can phase-separate, such a competitor can increase the survival time of one product. Moreover, in the presence of oscillatory fueling, the same mechanism reduces variations in the product concentration while the concentration variations of the competitor product are enhanced. Like a parasite, the product benefits from the protection of the host against deactivation and increases its robustness against fuel variations at the expense of the robustness of the host. Such a parasitic behavior in multiple fuel-driven reaction cycles represents a lifelike trait, paving the way for the bottom-up design of synthetic life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...