Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 23: 1808-1823, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38707543

RESUMO

Today's digital data storage systems typically offer advanced data recovery solutions to address the problem of catastrophic data loss, such as software-based disk sector analysis or physical-level data retrieval methods for conventional hard disk drives. However, DNA-based data storage currently relies solely on the inherent error correction properties of the methods used to encode digital data into strands of DNA. Any error that cannot be corrected utilizing the redundancy added by DNA encoding methods results in permanent data loss. To provide data recovery for DNA storage systems, we present a method to automatically reconstruct corrupted or missing data stored in DNA using fountain codes. Our method exploits the relationships between packets encoded with fountain codes to identify and rectify corrupted or lost data. Furthermore, we present file type-specific and content-based data recovery methods for three file types, illustrating how a fusion of fountain encoding-specific redundancy and knowledge about the data can effectively recover information in a corrupted DNA storage system, both in an automatic and in a guided manual manner. To demonstrate our approach, we introduce DR4DNA, a software toolkit that contains all methods presented. We evaluate DR4DNA using both in-silico and in-vitro experiments.

2.
Nat Commun ; 14(1): 628, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746948

RESUMO

The extensive information capacity of DNA, coupled with decreasing costs for DNA synthesis and sequencing, makes DNA an attractive alternative to traditional data storage. The processes of writing, storing, and reading DNA exhibit specific error profiles and constraints DNA sequences have to adhere to. We present DNA-Aeon, a concatenated coding scheme for DNA data storage. It supports the generation of variable-sized encoded sequences with a user-defined Guanine-Cytosine (GC) content, homopolymer length limitation, and the avoidance of undesired motifs. It further enables users to provide custom codebooks adhering to further constraints. DNA-Aeon can correct substitution errors, insertions, deletions, and the loss of whole DNA strands. Comparisons with other codes show better error-correction capabilities of DNA-Aeon at similar redundancy levels with decreased DNA synthesis costs. In-vitro tests indicate high reliability of DNA-Aeon even in the case of skewed sequencing read distributions and high read-dropout.


Assuntos
Replicação do DNA , DNA , Reprodutibilidade dos Testes , DNA/genética , Análise de Sequência de DNA , Algoritmos
3.
Bioinform Adv ; 3(1): vbad117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38496344

RESUMO

Motivation: There has been rapid progress in the development of error-correcting and constrained codes for DNA storage systems in recent years. However, improving the steps for processing raw sequencing data for DNA storage has a lot of untapped potential for further progress. In particular, constraints can be used as prior information to improve the processing of DNA sequencing data. Furthermore, a workflow tailored to DNA storage codes enables fair comparisons between different approaches while leading to reproducible results. Results: We present RepairNatrix, a read-processing workflow for DNA storage. RepairNatrix supports preprocessing of raw sequencing data for DNA storage applications and can be used to flag and heuristically repair constraint-violating sequences to further increase the recoverability of encoded data in the presence of errors. Compared to a preprocessing strategy without repair functionality, RepairNatrix reduced the number of raw reads required for the successful, error-free decoding of the input files by a factor of 25-35 across different datasets. Availability and implementation: RepairNatrix is available on Github: https://github.com/umr-ds/repairnatrix.

4.
BMC Bioinformatics ; 22(1): 406, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404355

RESUMO

BACKGROUND: DNA is a promising storage medium for high-density long-term digital data storage. Since DNA synthesis and sequencing are still relatively expensive tasks, the coding methods used to store digital data in DNA should correct errors and avoid unstable or error-prone DNA sequences. Near-optimal rateless erasure codes, also called fountain codes, are particularly interesting codes to realize high-capacity and low-error DNA storage systems, as shown by Erlich and Zielinski in their approach based on the Luby transform (LT) code. Since LT is the most basic fountain code, there is a large untapped potential for improvement in using near-optimal erasure codes for DNA storage. RESULTS: We present NOREC4DNA, a software framework to use, test, compare, and improve near-optimal rateless erasure codes (NORECs) for DNA storage systems. These codes can effectively be used to store digital information in DNA and cope with the restrictions of the DNA medium. Additionally, they can adapt to possible variable lengths of DNA strands and have nearly zero overhead. We describe the design and implementation of NOREC4DNA. Furthermore, we present experimental results demonstrating that NOREC4DNA can flexibly be used to evaluate the use of NORECs in DNA storage systems. In particular, we show that NORECs that apparently have not yet been used for DNA storage, such as Raptor and Online codes, can achieve significant improvements over LT codes that were used in previous work. NOREC4DNA is available on https://github.com/umr-ds/NOREC4DNA . CONCLUSION: NOREC4DNA is a flexible and extensible software framework for using, evaluating, and comparing NORECs for DNA storage systems.


Assuntos
Algoritmos , DNA , DNA/genética , Armazenamento e Recuperação da Informação , Análise de Sequência de DNA , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...