Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 10: e14533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530397

RESUMO

Cell density signaling drives tendon morphogenesis by regulating both procollagen production and cell proliferation. The signal is composed of a small, highly conserved protein (SNZR P) tightly bound to a tissue-specific, unique lipid (SNZR L). This allows the complex (SNZR PL) to bind to the membrane of the cell and locally diffuse over a radius of ~1 mm. The cell produces low levels of this signal but the binding to the membrane increases with the number of tendon cells in the local environment. In this article SNZR P was produced in E.coli and SNZR L was chemically synthesized. The two bind together when heated to 60 °C in the presence of Ca++ and Mg++ and the synthesized SNZR PL at ng/ml levels can replace serum. Adding SNZR PL to the medium was also tested on primary tendon cells from adult roosters. The older cells were in a maintenance state in vivo and in cell culture they proliferate more slowly than embryonic cells. Nevertheless, after reaching a moderately high cell density, they produced high levels of procollagen similar to the embryonic cells. This data was not expected from older cells but suggests that adult tendon cells can regenerate the tissue after injury when given the correct signals.


Assuntos
Células Artificiais , Pró-Colágeno , Animais , Masculino , Galinhas/metabolismo , Tendões , Proliferação de Células , Técnicas de Cultura de Células , Contagem de Células
2.
Biochem Biophys Rep ; 3: 38-44, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26900604

RESUMO

BACKGROUND: Scaling protein production seems like a simple perturbation of transcriptional control. However, when embryonic tendon fibroblasts have to produce >50% procollagen and secrete it from the cell 4 times faster than the average protein, this taxes the cellular machinery and requires a fresh look at how the pathway is controlled. Ascorbate, a reducing agent, can stimulate procollagen production 6-fold. Procollagen mRNA levels goes up 6-fold but requires 3 days for the cell to accomplish this task. Secretion rates, the last cellular step in the process, also goes up 6-fold but this occurs in <1 h. What regulatory scheme is consistent with these properties? SCOPE OF THIS REVIEW: This review focuses on fibroblasts that make high levels of procollagen (type I) and how they regulate the collagen pathway. Data from many different labs are relevant to this problem but it is hard to see the bigger picture from a large number of small studies. This review aims to consolidate this data into a coherent model and this requires solutions to some controversies and postulating potential mechanisms where the details are still missing. MAJOR CONCLUSIONS: In high collagen producing cells, the pathway is controlled by post-transcriptional regulation. This requires feedback control between secretion and translation rates that is based on the helical structure of the procollagen molecule and additional tissue-specific modifications. GENERAL SIGNIFICANCE: Transcriptional control does not scale well to high protein production with rapid regulation. New paradigms lead to better understanding of collagen diseases and tendon morphogenesis.

3.
PeerJ ; 1: e192, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244914

RESUMO

Cell density is the critical parameter controlling tendon morphogenesis. Knowing its neighbors allows a cell to regulate correctly its proliferation and collagen production. A missing link to understanding this process is a molecular description of the sensing mechanism. Previously, this mechanism was shown in cell culture to rely on a diffusible factor (SNZR [sensor]) with an affinity for the cell layer. This led to purifying conditioned medium over 4 columns and analyzing the final column fractions for band intensity on SDS gels versus biological activity - a 16 kD band strongly correlated between assays. N-terminal sequencing - EPLAVVDL - identified a large gene (424 AA), extremely conserved between chicken and human. In this paper we probe whether this is the correct gene. Can the predicted large protein be cleaved to a smaller protein? EPLAVVDL occurs towards the C-terminus and cleavage would create a small 94 AA protein. This protein would run at ∼10 kD, so what modifications or cofactor binding accounts for its running at 16 kD on SDS gels? This protein has no prominent hydrophobic regions, so can it be secreted? To validate its role, the chicken cDNA for this gene was tagged with myc and his and transfected into a human osteosarcoma cell line (U2OS). U2OS cells expressed the gene but not passively: differentiating into structures resembling spongy bone and expressing alkaline phosphatase, an early bone marker. Intracellularly, two bands were observed by Western blotting: the full length protein and a smaller form (26 kD). Outside the cell, a small band (28 kD) was detected, although it was 40% larger than expected, as well as multiple larger bands. These larger forms could be converted to the predicted smaller protein (94 AA + tags) by changing salt concentrations and ultrafiltering - releasing a cofactor to the filtrate while leaving a protein factor in the retentate. Using specific degradative enzymes and mass spectrometry, the bone cofactor was identified as a lipid containing a ceramide phosphate, a single chained glycerol lipid and a linker. Tendon uses a different cofactor made up of two fatty acid chains linked directly to the phosphate yielding a molecule about half the size. Moreover, adding the tendon factor/cofactor to osteosarcoma cells causes them to stop growing, which is opposite to its role with tendon cells. Thus, the cofactor is cell type specific both in composition and in the triggered response. Further support of its proposed role came from frozen sections from 5 week old mice where an antibody to the factor stained strongly at the growing ends of the tendon as predicted. In conclusion, the molecule needed for cell density signaling is a small protein bound to a unique, tissue-specific phospholipid yielding a membrane associated but diffusible molecule. Signal transduction is postulated to occur by an increased ordering of the plasma membrane as the concentration of this protein/lipid increases with cell density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...