Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chronobiol Int ; 40(5): 635-643, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36994649

RESUMO

Changes in day-length entrain the endogenous clock of organisms leading to complex responses to photoperiod. In long-lived organisms experiencing several seasons this response of the clock to photoperiod is phenotypically plastic. However, short-lived organisms often experience a single season without pronounced changes in day-length. For those, a plastic response of the clock to different seasons would not necessarily be adaptive. In aquatic ecosystems, zooplankton species like Daphnia live only for some weeks, i.e. one week up to ca. two months. However, they often show a succession of clones that are seasonally adapted to environmental changes. Here, we found that 16 Daphnia clones per each of three seasons ( = 48 clones) from the same pond and year differed in clock gene expression with a homogenous gene expression pattern in ephippia-hatched spring clones and a bimodal expression pattern in summer and autumn populations indicating an ongoing adaptation process. We clearly demonstrate that spring clones were adapted to a short, and summer clones to a long photoperiod. Furthermore, we found that gene expression of the melatonin-synthesis enzyme AANAT was always lowest in summer clones. In the Anthropocene, Daphnia's clock might be disturbed by light-pollution and global warming. Since Daphnia is a key-organism in trophic carbon transfer, a disruption of its clock rhythm would be devastating for the stability of freshwater ecosystems. Our results are an important step in understanding the adaptation of Daphnia's clock to environmental changes.


Assuntos
Ritmo Circadiano , Fotoperíodo , Animais , Ritmo Circadiano/fisiologia , Estações do Ano , Daphnia/genética , Ecossistema , Expressão Gênica , Daphnia pulex
2.
Toxins (Basel) ; 14(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36356020

RESUMO

The plethora of cyanobacterial toxins are an enormous threat to whole ecosystems and humans. Due to eutrophication and increases in lake temperatures from global warming, changes in the distribution of cyanobacterial toxins and selection of few highly toxic species/ strains are likely. Globally, one of the most important grazers that controls cyanobacterial blooms is Daphnia, a freshwater model organism in ecology and (eco)toxicology. Daphnia-cyanobacteria interactions have been studied extensively, often focusing on the interference of filamentous cyanobacteria with Daphnia's filtering apparatus, or on different nutritional constraints (the lack of essential amino acids or lipids) and grazer toxicity. For a long time, this toxicity only referred to microcystins. Currently, the focus shifts toward other deleterious cyanotoxins. Still, less than 10% of the total scientific output deals with cyanotoxins that are not microcystins; although these other cyanotoxins can occur just as frequently and at similar concentrations as microcystins in surface water. This review discusses the effects of different cyanobacterial toxins (hepatotoxins, digestive inhibitors, neurotoxins, and cytotoxins) on Daphnia and provides an elaborate and up-to-date overview of specific responses and adaptations of Daphnia. Furthermore, scenarios of what we can expect for the future of Daphnia-cyanobacteria interactions are described by comprising anthropogenic threats that might further increase toxin stress in Daphnia.


Assuntos
Cianobactérias , Toxinas Biológicas , Humanos , Animais , Daphnia , Toxinas de Cianobactérias , Ecossistema , Eutrofização , Cianobactérias/metabolismo , Toxinas Biológicas/metabolismo
4.
Harmful Algae ; 106: 102062, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34154785

RESUMO

Cyanobacterial blooms often produce different classes and chemical variants of toxins such as dietary protease inhibitors (PIs) that affect the keystone grazer Daphnia. However, it has been shown that Daphnia populations are able to locally adapt to frequently occurring dietary PIs by modulating their digestive proteases. Up until now, local adaptation has exclusively been tested by making use of single cyanobacterial strains and by measuring average population tolerance. In contrast, we measured juvenile somatic growth rates and egg numbers of several individual clones per each of three different D. magna populations that have previously been found to be either tolerant or sensitive to the Microcystis strain BM25. Clones from the three D. magna populations were either treated with BM25 that produces three different protease inhibitor variants of the class of Ahp-cyclodepsipeptides or another Microcystis strain that produces two other Ahp-cyclodepsipeptide variants. Subsequently, the population growth was calculated as mean of the single-clone growth rates. Both tolerant populations (which originate from ponds with a cyanobacterial history) proved to be similarly tolerant to both Microcystis strains. However, single genotypes of the populations differed in their response to the different strains. Both the tolerant and the sensitive populations contained both sensitive and tolerant genotypes but in different proportions. Furthermore, the genotypes from the sensitive population showed a higher variance in response to one or both strains. Trade-offs between somatic growth rate and clutch size were found in one of the tolerant populations that originated from a pond where cyanobacteria were frequent in the past but completely absent since the pond's restoration. Because of those intra-population difference, we conclude that the tolerant populations were putatively selected by different Ahp-cyclodepsipeptide variants in the past and that all populations still possess the potential to adapt to other environmental conditions by genotype frequency shifts.


Assuntos
Cianobactérias , Microcystis , Animais , Daphnia , Peptídeo Hidrolases , Inibidores de Proteases
5.
Toxins (Basel) ; 13(5)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946510

RESUMO

Cyanobacterial blooms are an omnipresent and well-known result of eutrophication and climate change in aquatic systems. Cyanobacteria produce a plethora of toxic secondary metabolites that affect humans, animals and ecosystems. Many cyanotoxins primarily affect the grazers of phytoplankton, e.g., Daphnia. The neurotoxin anatoxin-α has been reported world-wide; despite its potency, anatoxin-α and its effects on Daphnia have not been thoroughly investigated. Here, we investigated the effects of the anatoxin-α-producing Tychonema on life-history parameters and gene expression of nicotine-acetylcholine receptors (NAR), the direct targets of anatoxin-α, using several D. magna clones. We used juvenile somatic growth rates as a measure of fitness and analyzed gene expression by qPCR. Exposure to 100% Tychonema reduced the clones' growth rates and caused an up-regulation of NAR gene expression. When 50% of the food consisted of Tychonema, none of the clones were reduced in growth and only one of them showed an increase in NAR gene expression. We demonstrate that this increased NAR gene expression can be maternally transferred and that offspring from experienced mothers show a higher growth rate when treated with 50% Tychonema compared with control offspring. However, the addition of further (anthropogenic) stressors might impair Daphnia's adaptive responses to anatoxin-α. Especially the presence of certain pollutants (i.e., neonicotinoids), which also target NARs, might reduce Daphnia's capability to cope with anatoxin-α.


Assuntos
Daphnia/metabolismo , Tropanos/farmacologia , Animais , Clonagem Molecular , Cianobactérias/metabolismo , Toxinas de Cianobactérias , Daphnia/efeitos dos fármacos , Daphnia/genética , Expressão Gênica/efeitos dos fármacos
6.
Zoology (Jena) ; 144: 125856, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33202364

RESUMO

Nearly all organisms show daily and seasonal physiological and behavioural responses that are necessary for their survival. Often these responses are controlled by the rhythmic activity of an endogenous clock that perceives day length. Day length differs not only between seasons but also along latitudes, with different seasonal day lengths between the north and the south. Both seasonal and latitudinal differences in day length are discussed to be perceived/processed by the endogenous clock. Some species are distributed over a wide range of latitudes; it should be highly adaptive for these species to be able to time physiological responses (e.g. migration behaviour and diapause) according to the organisms' respective photoperiod, i.e. their respective seasonal and latitudinal day length. The mediator of day length is the indoleamine hormone melatonin which is synthesized by melatonin-producing enzymes (AANAT and HIOMT). These enzymes are in turn controlled by an endogenous clock. The ubiquitous aquatic keystone organism Daphnia possess clock and melatonin synthesis genes that are rhythmically expressed over 24hours. We were able to show that the 24-h rhythm of D. magna's clock persists in constant darkness and is thus truly circadian. In one particular photoperiod, all D. magna clones produced a similar melatonin concentration due to a fixed AANAT activity. However, we have demonstrated that clones originating from different latitudes are adapted to their respective photoperiod by showing a geographic cline in clock and downstream melatonin synthesis gene expression. These findings hint at the problem locally adapted organisms face when they are forced to leave their respective photoperiod, e.g. because of climate change-driven range-expansion. If such a species is incapable of adjusting its endogenous clock to an unknown photoperiod, it will likely become extinct.


Assuntos
Distribuição Animal , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Daphnia/fisiologia , Ecossistema , Regulação da Expressão Gênica/fisiologia , Fotoperíodo , África , Animais , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Daphnia/efeitos dos fármacos , Europa (Continente) , Regulação da Expressão Gênica/efeitos dos fármacos , Melatonina/farmacologia
7.
Front Microbiol ; 11: 586120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193235

RESUMO

The harmful bloom-forming cyanobacterium Planktothrix is commonly considered to be nutritionally inadequate for zooplankton grazers, resulting in limited top-down control. However, interactions between Planktothrix and zooplankton grazers are poorly understood. The food quality of Planktothrix is potentially constrained by morphological properties (i.e., filament formation), the production of harmful secondary metabolites, and a deficiency in essential lipids (i.e., primarily sterols). Here, we investigated the relative significance of toxin production (microcystins, carboxypeptidase A inhibitors, protease inhibitors) and sterol limitation for the performance of Daphnia feeding on one Planktothrix rubescens and one P. agardhii wild-type/microcystin knock-out mutant pair. Our data suggest that the poor food quality of both Planktothrix spp. is due to deleterious effects mediated by various harmful secondary metabolites and that the impact of sterol limitation is partially or completely superimposed by toxicity. The significance of the different factors seems to depend on the metabolite profile of the considered Planktothrix strain and the Daphnia clone that is used for the experiments. The toxin-responsive gene expression (transporter genes, gpx, and trypsin) and enzyme activity patterns revealed strain-specific food quality constraints and that Daphnia is capable of modulating its physiological responses according to the ingested Planktothrix strain. Future studies need to consider that Planktothrix-grazer interactions are simultaneously modulated by multiple factors to improve our understanding of top-down influences on Planktothrix bloom formation.

8.
Sci Rep ; 10(1): 19928, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199823

RESUMO

Diapause is a mechanism necessary for survival in arthropods. Often diapause induction and resurrection is light-dependent and therefore dependent on the photoperiod length and on the number of consecutive short-days. In many organisms, including the microcrustacean Daphnia magna, one functional entity with the capacity to measure seasonal changes in day-length is the circadian clock. There is a long-standing discussion that the circadian clock also controls photoperiod-induced diapause. We tested this hypothesis in D. magna, an organism which goes into a state of suspended animation with the shortening of the photoperiod. We measured gene expression of clock genes in diapause-destined embryos of D. magna in the initiation, resting and resurrection phases and checked it against gene expression levels of continuously developing embryos. We demonstrate that some genes of the clock are differentially expressed during diapause induction but not during its maintenance. Furthermore, the photoreceptor gene cry2 and the clock-associated gene brp are highly expressed during induction and early diapause, probably in order to produce excess mRNA to prepare for immediate resurrection. After resurrection, both types of embryos show a similar pattern of gene expression during development. Our study contributes significantly to the understanding of the molecular basis of diapause induction, maintenance and termination.


Assuntos
Proteínas de Artrópodes/metabolismo , Proteínas CLOCK/metabolismo , Relógios Circadianos , Daphnia/metabolismo , Diapausa de Inseto , Regulação da Expressão Gênica , Células Fotorreceptoras/metabolismo , Animais , Proteínas de Artrópodes/genética , Proteínas CLOCK/genética , Daphnia/embriologia , Daphnia/genética , Fotoperíodo , Estações do Ano
9.
Mol Ecol ; 29(5): 912-919, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32034824

RESUMO

Due to the combined effects of global warming and eutrophication, the frequency of deleterious cyanobacterial blooms in freshwater ecosystems has increased. In line with this, local adaptation of the aquatic keystone herbivore Daphnia to cyanobacteria has received major attention. Besides microcystins, the most frequent cyanobacterial secondary metabolites in such blooms are protease inhibitors (PIs). Recently, it has been shown that a protease gene showed copy number variation between four D. magna populations that differed in tolerance to PIs. From that study, we chose two distinct populations of D. magna which had or had not coexisted with cyanobacteria in the past. By calculating FST values, we found that the two populations were genetically more distant in the protease loci than in neutral loci. Population genetic tests applied to the tolerant population revealed that positive selection was most probably acting on the gene loci of the digestive protease CT448 and CT802. We conclude that the selection of digestive proteases and subsequent reduction in copy number is the molecular basis of evolutionary changes leading to local adaptation to PIs.


Assuntos
Aclimatação , Cianobactérias/química , Daphnia/enzimologia , Peptídeo Hidrolases/genética , Inibidores de Proteases/química , Sequência de Aminoácidos , Animais , Variações do Número de Cópias de DNA , Daphnia/genética , Água Doce , Genética Populacional , Genótipo , Polônia , Seleção Genética , Suécia
10.
Artigo em Inglês | MEDLINE | ID: mdl-29427614

RESUMO

Food quality is an important factor influencing organisms' well-being. In freshwater ecosystems, food quality has been studied extensively for the keystone herbivore genus Daphnia, as they form the critical trophic link between primary producers and higher order consumers such as fish. For Daphnia, the edible fraction of phytoplankton in lakes (consisting mostly of unicellular algae and cyanobacteria) is extraordinarily diverse. To be able to digest different food particles, Daphnia possess a set of digestive enzymes that metabolize carbohydrates, lipids and proteins. Recent studies have found a connection between gene expression and activity of single digestive enzyme types of Daphnia, i.e. lipases and proteases, and transcriptome studies have shown that a variety of genes coding for gut enzymes are differentially expressed in response to different food algae. However, never before has a set of digestive enzymes been studied simultaneously both on the gene expression and the enzyme activity level in Daphnia. Here, we investigated several digestive enzymes of Daphnia pulex in a comparison between a high-quality (green algal) and a low-quality (cyanobacterial) diet. Diet significantly affected the expression of all investigated digestive enzyme genes and enzyme activity was altered between treatments. Furthermore, we found that gene expression and enzyme activity were significantly correlated in cellulase, triacylglycerol lipase and ß-glucosidase when switched from high to low-quality food. We conclude that one of the factors causing the often observed low biomass and energy transfer efficiency from cyanobacteria to Daphnia is probably the switch to a cost-effective overall increase of gene expression and activity of digestive enzymes of this herbivore.


Assuntos
Daphnia/enzimologia , Daphnia/genética , Digestão , Qualidade dos Alimentos , Regulação Enzimológica da Expressão Gênica , Animais , Clorófitas , Cianobactérias/fisiologia , Daphnia/microbiologia , Daphnia/fisiologia
11.
Biol Open ; 6(2): 210-216, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28069588

RESUMO

We studied the short- (12 h) and long-term (144 h) response of Daphnia pulex lipases to quality shifts in diets consisting of different mixtures of the green alga Scenedesmus with the cyanobacterium Synechococcus, two species with contrasting lipid compositions. The lipase/esterase activity in both the gut and the body tissues had fast responses to the diet shift and increased with higher dietary contributions of Synechococcus When screening the Daphnia genome for TAG lipases, we discovered a large gene-family expansion of these enzymes. We used a subset of eight genes for mRNA expression analyses and distinguished between influences of time and diet on the observed gene expression patterns. We identified five diet-responsive lipases of which three showed a sophisticated short- and long-term pattern of expression in response to small changes in food-quality. Furthermore, the gene expression of one of the lipases was strongly correlated to lipase/esterase activity in the gut suggesting its potentially major role in digestion. These findings demonstrate that the lipid-related enzymatic machinery of D. pulex is finely tuned to diet and might constitute an important mechanism of physiological adaptation in nutritionally complex environments.

12.
J Exp Zool A Ecol Integr Physiol ; 327(2-3): 119-126, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-29356420

RESUMO

Copy number variation (CNV) of genes coding for certain enzymes has been shown to be responsible for adaptation of arthropods to anthropogenic toxins. Natural toxins produced by cyanobacteria in freshwater ecosystems, that is, protease inhibitors (PIs), have been demonstrated to increase in frequency over the last decades due to eutrophication and global warming. These PIs inhibit digestive proteases of Daphnia, the major herbivore of phytoplankton and cyanobacteria. The adjustment of isoforms, differences in gene expression, and activity of gut proteases determine tolerance to dietary PIs in single Daphnia genotypes. Here, we tested whether similar mechanisms are also responsible for differences in tolerance among Daphnia population. We developed a droplet digital PCR (ddPCR) method for the analysis of CNV of Daphnia proteases. We report that one Daphnia protease gene showed CNV between populations and that CNV correlates with chymotrypsin gene expression among populations. We showed that populations of Daphnia magna differ in tolerance to cyanobacterial PIs according to the cyanobacterial background of their lake of origin, which hints at local adaptation. The tolerance of the populations correlates with IC50 values of their chymotrypsins, which is probably due to a combined effect of CNV (translating into gene expression differences) and positive selection of tolerant protease isoforms. This is the first study using ddPCR to demonstrate CNV of a gene with ecologically relevant function, and the first report of differences in tolerance to cyanobacterial PIs among Daphnia populations in combination with the assessment of underlying molecular mechanisms.


Assuntos
Variações do Número de Cópias de DNA , Daphnia/genética , Peptídeo Hidrolases/genética , Animais , Cianobactérias/química , Cianobactérias/metabolismo , Daphnia/enzimologia , Regulação Enzimológica da Expressão Gênica , Variação Genética , Reação em Cadeia da Polimerase/métodos , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia
13.
Dev Genes Evol ; 226(1): 47-51, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26754486

RESUMO

Cyclic parthenogenetic organisms show a switch in reproductive strategy from asexual to sexual reproduction upon the occurrence of unfavourable environmental conditions. The sexual reproductive mode involves the production of ameiotic diploid males and the fertilization of meiotic haploid eggs. One beautiful example for this switch between parthenogenesis and sexual reproduction is Daphnia. Male and female Daphnia from the same clone are genetically identical. Morphological differences should therefore only be due to differential gene expression. This differential gene expression leads to sexually dimorphic phenotypes with elongated and moveable (i.e. leg-like) first antennae in males in comparison to females. For other arthropods, it has been demonstrated that the formation of differential morphology of legs and antennae involves the regulation of the Hox gene antennapedia (antp). Here, we show that antp is expressed during the embryogenesis of Daphnia, and that adults contain much lower amounts of antp mRNA than eggs. The eggs of mothers that were treated with the juvenile hormone methyl farnesoate (responsible for the production of male offspring) showed lower expression of antp than parthenogenetically produced female eggs. We therefore conclude that differential antp expression is involved in the molecular pathways inducing the male phenotype of Daphnia.


Assuntos
Daphnia/genética , Animais , Proteína do Homeodomínio de Antennapedia/metabolismo , Daphnia/crescimento & desenvolvimento , Daphnia/fisiologia , Feminino , Proteínas de Insetos/metabolismo , Masculino , Filogenia , Caracteres Sexuais , Processos de Determinação Sexual
14.
Artigo em Inglês | MEDLINE | ID: mdl-26773656

RESUMO

Elevated temperatures considerably challenge aquatic invertebrates, and enhanced energy metabolism and protein turnover require adjustments of digestion. In Daphnia, the serine proteases chymotrypsin and trypsin represent the major proteolytic enzymes. Daphnia pulex acclimated to different temperature conditions or subjected to acute heat stress showed increased expression level of serine proteases with rising temperatures. Transcripts of trypsin isoforms were always present in higher amounts than observed for chymotrypsin. Additionally, trypsin isoform transcripts were induced by elevated temperatures to a larger extent. Correspondingly, trypsin activity dominated in cold-acclimated animals. However, the enzymatic activity of chymotrypsin increased at elevated temperatures, whereas trypsin activity slightly decreased, resulting in a shift to dominating chymotrypsin activity in warm-acclimated animals. Zymograms revealed eight bands with proteolytic activity in the range of 20 to 86 kDa. The single bands were assigned to trypsin or chymotrypsin activity applying specific inhibitors or from casein cleavage products identified by mass spectrometric analysis. The total amount of proteolytic activity was elevated with acclimation temperature increase and showed a transient decrease under acute heat stress. The contribution of the different isoforms to protein digestion indicated induction of chymotrypsin with increasing acclimation temperature. For trypsin, the share of one isoform decreased with elevated temperature, while another isoform was enhanced. Thus differential expression of serine proteases was observed in response to chronic and acute temperature changes. The observed phenotypic plasticity adjusts the set of active proteases to the altered needs of protein metabolism optimizing protein digestion for the temperature conditions experienced in the habitat.


Assuntos
Proteínas de Artrópodes/metabolismo , Quimotripsina/metabolismo , Daphnia/enzimologia , Regulação Enzimológica da Expressão Gênica , Estresse Fisiológico , Tripsina/metabolismo , Aclimatação , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Quimotripsina/química , Quimotripsina/genética , Daphnia/crescimento & desenvolvimento , Daphnia/fisiologia , Digestão , Indução Enzimática , Repressão Enzimática , Estabilidade Enzimática , Feminino , Alemanha , Temperatura Alta/efeitos adversos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Lagos , Peso Molecular , Proteólise , RNA Mensageiro/metabolismo , Tripsina/química , Tripsina/genética
15.
BMC Physiol ; 14: 8, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25373613

RESUMO

BACKGROUND: The widespread occurrence of melatonin in prokaryotes as well as eukaryotes indicates that this indoleamine is considerably old. This high evolutionary age has led to the development of diverse functions of melatonin in different organisms, such as the detoxification of reactive oxygen species and anti-stress effects. In insects, i.e. Drosophila, the addition of melatonin has also been shown to increase the life span of this arthropod, probably by reducing age-related increasing oxidative stress. Although the presence of melatonin was recently found to exist in the ecological and toxicological model organism Daphnia, its function in this cladoceran has thus far not been addressed. Therefore, we challenged Daphnia with three different stressors in order to investigate potential stress-response attenuating effects of melatonin. i) Female and male daphnids were exposed to melatonin in a longevity experiment, ii) Daphnia were confronted with stress signals from the invertebrate predator Chaoborus sp., and iii) Daphnia were grown in high densities, i.e. under crowding-stress conditions. RESULTS: In our experiments we were able to show that longevity of daphnids was not affected by melatonin. Therefore, age-related increasing oxidative stress was probably not compensated by added melatonin. However, melatonin significantly attenuated Daphnia's response to acute predator stress, i.e. the formation of neckteeth which decrease the ability of the gape-limited predator Chaoborus sp. to handle their prey. In addition, melatonin decreased the extent of crowding-related production of resting eggs of Daphnia. CONCLUSIONS: Our results confirm the effect of melatonin on inhibition of stress-signal responses of Daphnia. Until now, only a single study demonstrated melatonin effects on behavioral responses due to vertebrate kairomones, whereas we clearly show a more general effect of melatonin: i) on morphological predator defense induced by an invertebrate kairomone and ii) on life history characteristics transmitted by chemical cues from conspecifics. Therefore, we could generally confirm that melatonin plays a role in the attenuation of responses to different stressors in Daphnia.


Assuntos
Daphnia/fisiologia , Longevidade , Melatonina/metabolismo , Estresse Fisiológico , Animais , Feminino , Masculino
16.
BMC Genomics ; 15: 776, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25199885

RESUMO

BACKGROUND: Cyanobacteria constitute a serious threat to freshwater ecosystems by producing toxic secondary metabolites, e.g. microcystins. These microcystins have been shown to harm livestock, pets and humans and to affect ecosystem service and functioning. Cyanobacterial blooms are increasing worldwide in intensity and frequency due to eutrophication and global warming. However, Daphnia, the main grazer of planktonic algae and cyanobacteria, has been shown to be able to suppress bloom-forming cyanobacteria and to adapt to cyanobacteria that produce microcystins. Since Daphnia's genome was published only recently, it is now possible to elucidate the underlying molecular mechanisms of microcystin tolerance of Daphnia. RESULTS: Daphnia magna was fed with either a cyanobacterial strain that produces microcystins or its genetically engineered microcystin knock-out mutant. Thus, it was possible to distinguish between effects due to the ingestion of cyanobacteria and effects caused specifically by microcystins. By using RNAseq the differentially expressed genes between the different treatments were analyzed and affected KOG-categories were calculated. Here we show that the expression of transporter genes in Daphnia was regulated as a specific response to microcystins. Subsequent qPCR and dietary supplementation with pure microcystin confirmed that the regulation of transporter gene expression was correlated with the tolerance of several Daphnia clones. CONCLUSIONS: Here, we were able to identify new candidate genes that specifically respond to microcystins by separating cyanobacterial effects from microcystin effects. The involvement of these candidate genes in tolerance to microcystins was validated by correlating the difference in transporter gene expression with clonal tolerance. Thus, the prevention of microcystin uptake most probably constitutes a key mechanism in the development of tolerance and adaptation of Daphnia. With the availability of clear candidate genes, future investigations examining the process of local adaptation of Daphnia populations to microcystins are now possible.


Assuntos
Biotransformação/genética , Daphnia/genética , Daphnia/metabolismo , Microcistinas/metabolismo , Animais , Cianobactérias/metabolismo , Ecossistema , Perfilação da Expressão Gênica , Reprodutibilidade dos Testes , Transcriptoma
17.
J Exp Biol ; 216(Pt 19): 3649-55, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23788705

RESUMO

Herbivore-plant interactions have been well studied in both terrestrial and aquatic ecosystems as they are crucial for the trophic transfer of energy and matter. In nutrient-rich freshwater ecosystems, the interaction between primary producers and herbivores is to a large extent represented by Daphnia and cyanobacteria. The occurrence of cyanobacterial blooms in lakes and ponds has, at least partly, been attributed to cyanotoxins, which negatively affect the major grazer of planktonic cyanobacteria, i.e. Daphnia. Among these cyanotoxins are the widespread protease inhibitors. These inhibitors have been shown (both in vitro and in situ) to inhibit the most important group of digestive proteases in the gut of Daphnia, i.e. trypsins and chymotrypsins, and to reduce Daphnia growth. In this study we grew cultures of the cyanobacterium Microcystis sp. strain BM25 on nutrient-replete, N-depleted or P-depleted medium. We identified three different micropeptins to be the cause for the inhibitory activity of BM25 against chymotrypsins. The micropeptin content depended on nutrient availability: whereas N limitation led to a lower concentration of micropeptins per biomass, P limitation resulted in a higher production of these chymotrypsin inhibitors. The altered micropeptin content of BM25 was accompanied by changed effects on the fitness of Daphnia magna: a higher content of micropeptins led to lower IC50 values for D. magna gut proteases and vice versa. Following expectations, the lower micropeptin content in the N-depleted BM25 caused higher somatic growth of D. magna. Therefore, protease inhibitors can be regarded as a nutrient-dependent defence against grazers. Interestingly, although the P limitation of the cyanobacterium led to a higher micropeptin content, high growth of D. magna was observed when they were fed with P-depleted BM25. This might be due to reduced digestibility of P-depleted cells with putatively thick mucilaginous sheaths. These findings indicate that both the grazer and the cyanobacterium benefit from P reduction in terms of digestibility and growth inhibition, which is an interesting starting point for further studies.


Assuntos
Toxinas Bacterianas/metabolismo , Chlamydomonas/fisiologia , Daphnia/enzimologia , Microcystis/fisiologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/metabolismo , Animais , Daphnia/fisiologia , Herbivoria
18.
Oecologia ; 172(1): 11-20, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23053237

RESUMO

Protease inhibitors (PIs) have frequently been found in cyanobacterial blooms and have been shown to affect the major herbivore Daphnia by decreasing growth and inhibiting gut protease activity. However, it has been shown that a clone of Daphnia is able to respond to dietary PIs by increasing its protease gene expression. Such an inducible response might be maternally transferred to the next generation. Therefore, we tested a tolerant clone for maternal transfer of protease gene expression. When exposed to the trypsin inhibitor-producing cyanobacterium Microcystis aeruginosa PCC7806 Mut, Daphnia mothers and their untreated newborns showed an increase in trypsin gene expression compared to naïve mothers grown on control food and their offspring. The maternally transferred increase in gene expression was accompanied by a higher somatic growth rate of the offspring generation from exposed mothers compared to offspring from naïve mothers. This higher growth rate compensated for the lower dry mass of newborns from exposed mothers and led to the same fitness as observed in the offspring of naïve mothers. In nature, clones that can maternally transfer increased protease gene expression should have an advantage over clones that cannot. The selection for such more tolerant clones by naturally occurring PIs might lead to microevolution of natural Daphnia populations, and to local adaptation in the long term. This is the first study to show an adaptive maternal transfer of increased target gene expression in an ecological context.


Assuntos
Daphnia/microbiologia , Microcystis/metabolismo , Peptídeo Hidrolases/genética , Inibidores da Tripsina/farmacologia , Animais , Daphnia/genética , Daphnia/metabolismo , Regulação da Expressão Gênica , Impressão Genômica , Peptídeo Hidrolases/metabolismo , Tripsina/biossíntese
19.
Mol Ecol ; 21(19): 4898-911, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22943151

RESUMO

Protease inhibitors of primary producers are a major food quality constraint for herbivores. In nutrient-rich freshwater ecosystems, the interaction between primary producers and herbivores is mainly represented by Daphnia and cyanobacteria. Protease inhibitors have been found in many cyanobacterial blooms. These inhibitors have been shown (both in vitro and in situ) to inhibit the most important group of digestive proteases in the daphnid's gut, that is, trypsins and chymotrypsins. In this study, we fed four different Daphnia magna genotypes with the trypsin-inhibitor-containing cyanobacterial strain Microcystis aeruginosa PCC 7806 Mut. Upon exposure to dietary trypsin inhibitors, all D. magna genotypes showed increased gene expression of digestive trypsins and chymotrypsins. Exposure to dietary trypsin inhibitors resulted in increased activity of chymotrypsins and reduced activity of trypsin. Strong intraspecific differences in tolerance of the four D. magna genotypes to the dietary trypsin inhibitors were found. The degree of tolerance depended on the D. magna genotype. The genotypes' tolerance was positively correlated with the residual trypsin activity and the different IC(50) values of the trypsins. On the genetic level, the different trypsin loci varied between the D. magna genotypes. The two tolerant Daphnia genotypes that both originate from the same lake, which frequently produces cyanobacterial blooms, clustered in a neighbour-joining phylogenetic tree based on the three trypsin loci. This suggests that the genetic variability of trypsin loci was an important cause for the observed intraspecific variability in tolerance to cyanobacterial trypsin inhibitors. Based on these findings, it is reasonable to assume that such genetic variability can also be found in natural populations and thus constitutes the basis for local adaptation of natural populations to dietary protease inhibitors.


Assuntos
Quimotripsina/metabolismo , Cianobactérias/química , Daphnia/genética , Daphnia/fisiologia , Inibidores da Tripsina/metabolismo , Tripsina/metabolismo , Animais , Clorófitas , Quimotripsina/genética , Daphnia/enzimologia , Daphnia/crescimento & desenvolvimento , Cadeia Alimentar , Genótipo , Concentração Inibidora 50 , Dados de Sequência Molecular , Filogenia , Tripsina/genética
20.
J Exp Biol ; 215(Pt 12): 2051-9, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22623193

RESUMO

Daphnia has been shown to acquire tolerance to cyanobacterial toxins within an animals' lifetime and to transfer this tolerance to the next generation. Here we used a strain of the cyanobacterium Microcystis aeruginosa, which contained two chymotrypsin inhibitors (BN920 and CP954), the green alga Scenedesmus obliquus as reference food and a clone of D. magna to investigate the physiological mechanism of acquired tolerance to these cyanobacterial toxins. The intracellular concentrations of CP954 and BN920 were 1550 and 120 µmol l(-1), respectively. When food suspensions of the green alga contained >60% M. aeruginosa, growth rates of D. magna were reduced. When grown on the green alga, three chymotrypsins ranging in mass from 16 to 22 kDa were distinguished in D. magna. Purified BN920 and CP954 specifically inhibited D. magna chymotrypsins. Feeding with encapsulated BN920 resulted in growth depression in D. magna and replacement of the chymotrypsins by three chymotrypsins with smaller molecular mass. With just 20% M. aeruginosa, the same changes in the chymotrypsin pattern as with the pure inhibitor were observed. IC(50) values for inhibition of chymotrypsins of D. magna growing on the green alga were 5.4 nmol l(-1) (BN920) and 7.4 nmol l(-1) (CP954). When D. magna was grown on 20% M. aeruginosa, 2.2-fold higher IC(50) values were observed. This indicated that increased tolerance to these dietary inhibitors was acquired within an animal's lifetime by remodelling the digestive chymotrypsins, which in turn serves as an intra-generational defence against these cyanobacterial inhibitors. This mechanism might be relevant for the transfer of tolerance to the next generation through maternal effects.


Assuntos
Toxinas Bacterianas/metabolismo , Daphnia/fisiologia , Toxinas Marinhas/metabolismo , Microcistinas/metabolismo , Microcystis/metabolismo , Peptídeo Hidrolases/metabolismo , Scenedesmus/metabolismo , Animais , Quimotripsina/metabolismo , Toxinas de Cianobactérias , Daphnia/enzimologia , Digestão , Herbivoria , Inibidores de Proteases/metabolismo , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...