Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Ecol ; 39(11-12): 1361-72, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24190022

RESUMO

Generalist insects show reduced selectivity when subjected to similar, but not identical, host plant chemical signatures. Here, we produced transgenic Arabidopsis thaliana plants that over-express genes regulating the aliphatic- and indolyl- glucosinolates biosynthetic pathways with either a constitutive (CaMV 35S) or a phloem-specific promoter (AtSUC2). This allowed us to examine how exposure to high levels of aliphatic- or indolyl-glucosinolates in homogenous habitats (leaf cage apparatus containing two wild-type or two transgenic leaves) and heterogeneous habitats (leaf cage apparatus containing one wild-type and one transgenic leaf) affects host selection and performance of Bemsia tabaci, a generalist phloem-feeding insect. Data from homogenous habitats indicated that exposure to A. thaliana plants accumulating high levels of aliphatic- or indolyl-glucosinolates negatively affected the performance of both adult females and nymphs of B. tabaci. Data from heterogeneous habitats indicated that B. tabaci adult females selected for oviposition plants on which their offspring perform better (preference-performance relationship). However, the combinations of wild-type and transgenic plants in heterogeneous habitats increased the period of time until the first choice was made and led to increased movement rate on transgenic plants, and reduced fecundity on wild-type plants. Overall, our findings are consistent with the view that both performance and selectivity of B. tabaci decrease in heterogeneous habitats that contain plants with closely-related chemical signatures.


Assuntos
Arabidopsis/fisiologia , Glucosinolatos/metabolismo , Hemípteros/fisiologia , Animais , Proteínas de Arabidopsis/genética , Ecossistema , Comportamento Alimentar , Feminino , Expressão Gênica , Histona Acetiltransferases/genética , Masculino , Oviposição , Plantas Geneticamente Modificadas/fisiologia , Fatores de Transcrição/genética
2.
PLoS One ; 8(9): e75298, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098691

RESUMO

The pea aphid (Acyrthosiphon pisum Harris), a legume specialist, encompasses at least 11 genetically distinct sympatric host races. Each host race shows a preference for a certain legume species. Six pea aphid clones from three host races were used to localize plant factors influencing aphid probing and feeding behavior on four legume species. Aphid performance was tested by measuring survival and growth. The location of plant factors influencing aphid probing and feeding was determined using the electrical penetration graph (EPG) technique. Every aphid clone performed best on the plant species from which it was originally collected, as well as on Vicia faba. On other plant species, clones showed intermediate or poor performance. The most important plant factors influencing aphid probing and feeding behavior were localized in the epidermis and sieve elements. Repetitive puncturing of sieve elements might be relevant for establishing phloem feeding, since feeding periods appear nearly exclusively after these repetitive sieve element punctures. A combination of plant factors influences the behavior of pea aphid host races on different legume species and likely contributes to the maintenance of these races.


Assuntos
Afídeos/fisiologia , Fabaceae/química , Fabaceae/parasitologia , Comportamento Alimentar/fisiologia , Análise de Variância , Animais , Condutividade Elétrica , Europa (Continente) , Células do Mesofilo/química , Epiderme Vegetal/química , Especificidade da Espécie , Compostos Orgânicos Voláteis/análise
3.
Planta ; 224(6): 1329-40, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16738859

RESUMO

The recovery of free purine and pyrimidine bases and their degradation products represent alternative pathways in plant cells either to synthesize nucleotides (salvage pathways) by low energy consumption or to reuse organic nitrogen. Such recycling of metabolites often requires their uptake into the cell by specialized transport systems residing in the plasma membrane. In plants, it has been suggested that several protein families are involved in this process, but only a few transporters have so far been characterized. In this work, gene expression, substrate specificities, and transport mechanisms of members of the Ureide Permease family in Arabidopsis (AtUPS) were analyzed and compared. Promoter-GUS studies indicated that the members of the family have distinct and partially overlapping expression patterns with regard to developmental stages or tissue specific localization. In addition, two alternative splice variants of AtUPS5, a novel member of the transporter family, were identified and investigated. The abundance of both alternative mRNAs varied in different organs, while the relative amounts were comparable. AtUPS5l (longer isoform) shares similar structural prediction with AtUPS1 and AtUPS2. In contrast, AtUPS5s (shorter isoform) lacks two transmembrane domains as structural consequence of the additional splice event. When expressed in yeast, AtUPS5l mediates cellular import of cyclic purine degradation products and pyrimidines similarly to AtUPS1 and AtUPS2, but differences in transport efficiencies were observed. AtUPS5s, however, could not be shown to mediate uptake of these compounds into yeast cells and might therefore be defective or have a different function.


Assuntos
Processamento Alternativo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Sequência de Bases , Primers do DNA , Proteínas de Membrana Transportadoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...