Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 83(8): 083903, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22938310

RESUMO

We present an improved nuclear refrigerator reaching 0.3 mK, aimed at microkelvin nanoelectronic experiments, and use it to investigate metallic Coulomb blockade thermometers (CBTs) with various resistances R. The high-R devices cool to slightly lower T, consistent with better isolation from the noise environment, and exhibit electron-phonon cooling [proportional] T(5) and a residual heat-leak of 40 aW. In contrast, the low-R CBTs display cooling with a clearly weaker T-dependence, deviating from the electron-phonon mechanism. The CBTs agree excellently with the refrigerator temperature above 20 mK and reach a minimum-T of 7.5 ± 0.2 mK.

2.
Rev Sci Instrum ; 81(10): 103904, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21034099

RESUMO

We propose a new scheme aimed at cooling nanostructures to microkelvin temperature based on the well established technique of adiabatic nuclear demagnetization: we attach each device measurement lead to an individual nuclear refrigerator, allowing efficient thermal contact to a microkelvin bath. On a prototype consisting of a parallel network of nuclear refrigerators, temperatures of ∼1 mK simultaneously on ten measurement leads have been reached upon demagnetization, thus completing the first steps toward ultracold nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...