Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 12(2): 195-213, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38091375

RESUMO

The costimulatory receptor CD137 (also known as TNFRSF9 or 4-1BB) sustains effective cytotoxic T-cell responses. Agonistic anti-CD137 cancer immunotherapies are being investigated in clinical trials. Development of the first-generation CD137-agonist monotherapies utomilumab and urelumab was unsuccessful due to low antitumor efficacy mediated by the epitope recognized on CD137 or hepatotoxicity mediated by Fcγ receptors (FcγR) ligand-dependent CD137 activation, respectively. M9657 was engineered as a tetravalent bispecific antibody (mAb2) in a human IgG1 backbone with LALA mutations to reduce binding to FCγRs. Here, we report that M9657 selectively binds to mesothelin (MSLN) and CD137 with similar affinity in humans and cynomolgus monkeys. In a cellular functional assay, M9657 enhanced CD8+ T cell-mediated cytotoxicity and cytokine release in the presence of tumor cells, which was dependent on both MSLN expression and T-cell receptor/CD3 activation. Both FS122m, a murine surrogate with the same protein structure as M9657, and chimeric M9657, a modified M9657 antibody with the Fab portion replaced with an anti-murine MSLN motif, demonstrated in vivo antitumor efficacy against various tumors in wild-type and human CD137 knock-in mice, and this was accompanied by activated CD8+ T-cell infiltration in the tumor microenvironment. The antitumor immunity of M9657 and FS122m depended on MSLN expression density and the mAb2 structure. Compared with 3H3, a murine surrogate of urelumab, FS122m and chimeric M9657 displayed significantly lower on-target/off-tumor toxicity. Taken together, M9657 exhibits a promising profile for development as a tumor-targeting immune agonist with potent anticancer activity without systemic immune activation and associated hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Neoplasias , Humanos , Animais , Camundongos , Mesotelina , Inflamação , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral , Microambiente Tumoral
2.
Oncoimmunology ; 10(1): 1958590, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484871

RESUMO

Avelumab is an IgG1 anti-programmed death ligand 1 (anti-PD-L1) monoclonal antibody that has been approved as a monotherapy for metastatic Merkel cell carcinoma and advanced urothelial carcinoma, and in combination with axitinib for advanced renal cell carcinoma. Avelumab is cleared faster and has a shorter half-life than other anti-PD-L1 antibodies, such as atezolizumab and durvalumab, but the mechanisms underlying these differences are unknown. IgG antibodies can be cleared through receptor-mediated endocytosis after binding of the antibody Fab region to target proteins, or via Fcγ receptor (FcγR)-mediated endocytosis. Unlike other approved anti-PD-L1 antibodies, avelumab has a native Fc region that retains FcγR binding capability. We hypothesized that the rapid clearance of avelumab might be due to the synergistic effect of both FcγR-mediated and PD-L1 target-mediated internalization. To investigate this, we performed in vitro and in vivo studies that compared engineered variants of avelumab and atezolizumab to determine mechanisms of cellular internalization. We found that both FcγR and PD-L1 binding contribute to avelumab internalization. While FcγR binding was the dominant mechanism of avelumab internalization in vitro, with CD64 acting as the most important FcγR, studies in mice and cynomolgus monkeys showed that both FcγR and PD-L1 contribute to avelumab elimination, with PD-L1 binding playing a greater role. These studies suggest that the rapid internalization of avelumab might be due to simultaneous binding of both PD-L1 and FcγR in trans. Our findings also provide a basis to alter the clearance and half-life of monoclonal antibodies in therapeutic development.


Assuntos
Carcinoma de Células de Transição , Neoplasias Cutâneas , Neoplasias da Bexiga Urinária , Animais , Anticorpos Monoclonais Humanizados , Antígeno B7-H1 , Humanos , Camundongos , Receptores de IgG
3.
Arch Biochem Biophys ; 526(2): 219-25, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22426455

RESUMO

Certain combinations of non-competitive anti-EGFR antibodies have been reported to produce new effects on cells compared to either antibody used separately. New and enhanced combination-activity includes increased inhibition of signaling, increased receptor internalization and degradation, reduced proliferation of tumor cell lines and induction of complement-dependent cytotoxicity (CDC) effector function. To test requirements and mechanisms to elicit enhanced combination-activity with different EGFR binding domains, we created an anti-EGFR biparatopic antibody. A biparatopic antibody interacts through two different antigen-binding sites to a single antigen. A heterodimeric antibody with one binding domain derived from the C225 antibody and one binding domain derived from the humanized 425 (hu425) antibody was built on the strand-exchange engineered domain (SEED) scaffold. This anti-EGFR biparatopic-SEED antibody was compared to parental antibodies used alone and in combination, and to the corresponding monovalent anti-EGFR-SEED antibodies used alone or in combination. We found that the anti-EGFR biparatopic-SEED had enhanced activity, similar to the combination of the two parental antibodies. Combinations of monovalent anti-EGFR-SEED antibodies did not produce enhanced effectiveness in cellular assays. Our results show that the anti-EGFR biparatopic antibody created using the SEED scaffold has enhanced combination-activity in a single molecule. Furthermore, these data suggest that the potential to cross-link the two different epitopes is an important requirement in the mechanism of enhanced combination-activity.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais/imunologia , Receptores ErbB/imunologia , Anticorpos Biespecíficos/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais Humanizados/química , Sítios de Ligação de Anticorpos , Linhagem Celular Tumoral , Proliferação de Células , Cetuximab , Epitopos/imunologia , Humanos , Estrutura Terciária de Proteína
4.
Protein Eng Des Sel ; 24(5): 447-54, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21498564

RESUMO

The strand-exchange engineered domain (SEED) platform was designed to generate asymmetric and bispecific antibody-like molecules, a capability that expands therapeutic applications of natural antibodies. This new protein engineered platform is based on exchanging structurally related sequences of immunoglobulin within the conserved CH3 domains. Alternating sequences from human IgA and IgG in the SEED CH3 domains generate two asymmetric but complementary domains, designated AG and GA. The SEED design allows efficient generation of AG/GA heterodimers, while disfavoring homodimerization of AG and GA SEED CH3 domains. Using a clinically validated antibody (C225), we tested whether Fab derivatives constructed on the SEED platform retain desirable therapeutic antibody features such as in vitro and in vivo stability, favorable pharmacokinetics, ligand binding and effector functions including antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. In addition, we tested SEED with combinations of binder domains (scFv, VHH, Fab). Mono- and bivalent Fab-SEED fusions retain full binding affinity, have excellent biochemical and biophysical stability, and retain desirable antibody-like characteristics conferred by Fc domains. Furthermore, SEED is compatible with different combinations of Fab, scFv and VHH domains. Our assessment shows that the new SEED platform expands therapeutic applications of natural antibodies by generating heterodimeric Fc-analog proteins.


Assuntos
Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/imunologia , Especificidade de Anticorpos , Engenharia de Proteínas/métodos , Animais , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Afinidade de Anticorpos , Linhagem Celular Tumoral , Proteínas do Sistema Complemento/imunologia , Receptores ErbB/imunologia , Meia-Vida , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/imunologia , Imunoglobulina G/genética , Masculino , Camundongos , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
5.
Mol Hum Reprod ; 11(8): 591-600, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16051677

RESUMO

LGR7 and LGR8 are G protein-coupled receptors that belong to the leucine-rich repeat-containing G-protein coupled receptor (LGR) family, including the thyroid-stimulating hormone (TSH), LH and FSH receptors. LGR7 and LGR8 stimulate cAMP production upon binding of the cognate ligands, relaxin and insulin-like peptide 3 (INSL3), respectively. We cloned several novel splice variants of both LGR7 and LGR8 and analysed the function of four variants. LGR7.1 is a truncated receptor, including only the N-terminal region of the receptor and two leucine rich repeats. In contrast, LGR7.2, LGR7.10 and LGR 8.1 all contain an intact seven transmembrane domain and most of the extracellular region, lacking only one or two exons in the ectodomain. Our analysis demonstrates that although LGR7.10 and LGR8.1 are expressed at the cell surface, LGR7.2 is predominantly retained within cells and LGR7.1 is partially secreted. mRNA expression analysis revealed that several variants are co-expressed in various tissues. None of these variants were able to stimulate cAMP production following relaxin or INSL3 treatment. Unexpectedly, we did not detect any direct specific relaxin or INSL3 binding on any of the splice variants. The large number of receptor splice variants identified suggests an unforeseen complexity in the physiology of this novel hormone-receptor system.


Assuntos
Processamento Alternativo/genética , Proteínas de Membrana/genética , Receptores Acoplados a Proteínas G/genética , Sequência de Bases , Humanos , Insulina/metabolismo , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos , Relaxina/metabolismo
6.
J Biol Chem ; 278(31): 28961-7, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12716880

RESUMO

The extracellular domain of the p55 TNF receptor (TNFrED) is an important therapeutic protein for targeting tumor necrosis factor-alpha (TNF-alpha). The expression level of the TNFrED is low for bioproduction, which is presumably associated with the complication of pairing 24 cysteine residues to form correct disulfide bonds. Here we report the application of the yeast display method to study expression of TNFrED, a multimeric receptor. Randomly mutated libraries of TNFrED were screened, and two mutants were identified that express several-fold higher protein levels compared with the wild type while still retaining normal binding affinity for TNF-alpha. The substituted residues responsible for the higher protein expression in both mutants were identified as proline, and both proline residues are adjacent to cysteine residues involved in disulfide bonds. Analysis of the mutant residues revealed that the improved level of expression is due to conformational restriction of the substituted residues to that of the folded state seen in the crystal structures of TNFrED thereby forcing the neighboring cysteine residues into the correct orientation for proper disulfide bond formation.


Assuntos
Expressão Gênica , Receptores do Fator de Necrose Tumoral/química , Receptores do Fator de Necrose Tumoral/genética , Relação Estrutura-Atividade , Aglutininas/genética , Biotinilação , Linhagem Celular , Cisteína/química , Dissulfetos/química , Biblioteca Gênica , Glicosídeo Hidrolases/genética , Humanos , Modelos Moleculares , Estrutura Molecular , Mutagênese , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Prolina , Conformação Proteica , Dobramento de Proteína , Estrutura Quaternária de Proteína , RNA Mensageiro/análise , Receptores do Fator de Necrose Tumoral/metabolismo , Proteínas Recombinantes de Fusão , Saccharomyces cerevisiae/genética , Ressonância de Plasmônio de Superfície , Termodinâmica , Transfecção , Fator de Necrose Tumoral alfa/metabolismo , beta-Frutofuranosidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...