Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Res ; 28(1): 30, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36647177

RESUMO

BACKGROUND: People with Parkinson`s disease (PD) often suffer from both motor and cognitive impairments. Simultaneous motor and cognitive training stimulates neurobiological processes which are important especially for people with PD. The aim of this study is to test the feasibility and effects of simultaneous cognitive-motor training in form of exergames in the setting of inpatient rehabilitation of persons with PD. METHODS: Forty participants (72.4 ± 9.54 years; Hoehn and Yahr stage 1-4) were randomly assigned to either the intervention group, which trained five times a week in addition to the conventional rehabilitation program, or the control group, which underwent the standard rehabilitation treatment only. Primary outcome was feasibility (measured by adherence rate, attrition rate, occurrence of adverse events, system usability scale (SUS), and NASA TLX score). In addition, various cognitive (Go/No-Go test, reaction time test (RTT), color word interference test (D-KEFS) and Trail Making Test A and B (TMT)) and motor (preferred gait speed, maximum gait speed, dual-task gait speed, Short Physical Performance Battery (SPPB), Timed Up and Go (TUG) and 5 times Sit-to-Stand (5xStS)) tests were conducted before and after the intervention phase in order to determine training effects RESULTS: Adherence rate was 97%, there were just two dropouts due to reasons unrelated to the study and there were no adverse events. The mean NASA TLX value was 56.2 and the mean value of the SUS was 76.7. Significant time-group interaction effects were observed for the 5xStS, the SPPB, the RTT, the Go/No-Go test and the D-KEFS 2. DISCUSSION: Exergaming, as applied in this study, showed to be feasible, safe and likely effective for the improvement of cognitive and motor functions of PD inpatients. Because of this future randomized controlled trials with a main focus on testing the efficacy of this new intervention are warranted. TRIAL REGISTRATION: The study has been registered at ClinicalTrials.gov (ID: NCT04872153).


Assuntos
Jogos Eletrônicos de Movimento , Doença de Parkinson , Humanos , Pacientes Internados , Projetos Piloto , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Doença de Parkinson/psicologia , Estudos de Viabilidade , Cognição , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
Pilot Feasibility Stud ; 8(1): 139, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35791026

RESUMO

BACKGROUND: There is a need to provide highly repetitive and intensive therapy programs for patients after stroke to improve sensorimotor impairment. The employment of technology-assisted training may facilitate access to individualized rehabilitation of high intensity. The purpose of this study was to evaluate the safety and acceptance of a high-intensity technology-assisted training for patients after stroke in the subacute or chronic phase and to establish its feasibility for a subsequent randomized controlled trial. METHODS: A longitudinal, multi-center, single-group study was conducted in four rehabilitation clinics. Patients participated in a high-intensity 4-week technology-assisted trainings consisting of 3 to 5 training days per week and at least 5 training sessions per day with a duration of 45 min each. Feasibility was evaluated by examining recruitment, intervention-related outcomes (adherence, subjectively perceived effort and effectiveness, adverse events), patient-related outcomes, and efficiency gains. Secondary outcomes focused on all three domains of the International Classification of Functioning Disability and Health. Data were analyzed and presented in a descriptive manner. RESULTS: In total, 14 patients after stroke were included. Participants exercised between 12 and 21 days and received between 28 and 82 (mean 46 ± 15) technology-assisted trainings during the study period, which corresponded to 2 to 7 daily interventions. Treatment was safe. No serious adverse events were reported. Minor adverse events were related to tiredness and exertion. From baseline to the end of the intervention, patients improved in several functional performance assessments of the upper and lower extremities. The efficiency gains of the trainings amounted to 10% to 58%, in particular for training of the whole body and for walking training in severely impaired patients. CONCLUSIONS: Highly intensive technology-assisted training appears to be feasible for in- and outpatients in the subacute or chronic phase after stroke. Further clinical trials are warranted in order to define the most comprehensive approach to highly intensive technology-assisted training and to investigate its efficacy in patients with neurological disorders. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03641651 at August 31st 2018.

3.
J Neuroeng Rehabil ; 15(1): 30, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29625628

RESUMO

BACKGROUND: The application of rehabilitation robots has grown during the last decade. While meta-analyses have shown beneficial effects of robotic interventions for some patient groups, the evidence is less in others. We established the Advanced Robotic Therapy Integrated Centers (ARTIC) network with the goal of advancing the science and clinical practice of rehabilitation robotics. The investigators hope to exploit variations in practice to learn about current clinical application and outcomes. The aim of this paper is to introduce the ARTIC network to the clinical and research community, present the initial data set and its characteristics and compare the outcome data collected so far with data from prior studies. METHODS: ARTIC is a pragmatic observational study of clinical care. The database includes patients with various neurological and gait deficits who used the driven gait orthosis Lokomat® as part of their treatment. Patient characteristics, diagnosis-specific information, and indicators of impairment severity are collected. Core clinical assessments include the 10-Meter Walk Test and the Goal Attainment Scaling. Data from each Lokomat® training session are automatically collected. RESULTS: At time of analysis, the database contained data collected from 595 patients (cerebral palsy: n = 208; stroke: n = 129; spinal cord injury: n = 93; traumatic brain injury: n = 39; and various other diagnoses: n = 126). At onset, average walking speeds were slow. The training intensity increased from the first to the final therapy session and most patients achieved their goals. CONCLUSIONS: The characteristics of the patients matched epidemiological data for the target populations. When patient characteristics differed from epidemiological data, this was mainly due to the selection criteria used to assess eligibility for Lokomat® training. While patients included in randomized controlled interventional trials have to fulfill many inclusion and exclusion criteria, the only selection criteria applying to patients in the ARTIC database are those required for use of the Lokomat®. We suggest that the ARTIC network offers an opportunity to investigate the clinical application and effectiveness of rehabilitation technologies for various diagnoses. Due to the standardization of assessments and the use of a common technology, this network could serve as a basis for researchers interested in specific interventional studies expanding beyond the Lokomat®.


Assuntos
Bases de Dados como Assunto/organização & administração , Exoesqueleto Energizado , Transtornos Neurológicos da Marcha/reabilitação , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...