Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME Commun ; 3(1): 97, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723220

RESUMO

Visible surface films, termed slicks, can extensively cover freshwater and marine ecosystems, with coastal regions being particularly susceptible to their presence. The sea-surface microlayer (SML), the upper 1-mm at the air-water interface in slicks (herein slick SML) harbors a distinctive bacterial community, but generally little is known about SML viruses. Using flow cytometry, metagenomics, and cultivation, we characterized viruses and bacteria in a brackish slick SML in comparison to non-slick SML as well as seawater below slick and non-slick areas (subsurface water = SSW). Size-fractionated filtration of all samples distinguished viral attachment to hosts and particles. The slick SML contained higher abundances of virus-like particles, prokaryotic cells, and dissolved organic carbon compared to non-slick SML and SSW. The community of 428 viral operational taxonomic units (vOTUs), 426 predicted as lytic, distinctly differed across all size fractions in the slick SML compared to non-slick SML and SSW. Specific metabolic profiles of bacterial metagenome-assembled genomes and isolates in the slick SML included a prevalence of genes encoding motility and carbohydrate-active enzymes (CAZymes). Several vOTUs were enriched in slick SML, and many virus variants were associated with particles. Nine vOTUs were only found in slick SML, six of them being targeted by slick SML-specific clustered-regularly interspaced short palindromic repeats (CRISPR) spacers likely originating from Gammaproteobacteria. Moreover, isolation of three previously unknown lytic phages for Alishewanella sp. and Pseudoalteromonas tunicata, abundant and actively replicating slick SML bacteria, suggests that viral activity in slicks contributes to biogeochemical cycling in coastal ecosystems.

2.
Front Microbiol ; 14: 1097500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970672

RESUMO

The addition of small amounts of algal biomass to stimulate methane production in coal seams is a promising low carbon renewable coalbed methane enhancement technique. However, little is known about how the addition of algal biomass amendment affects methane production from coals of different thermal maturity. Here, we show that biogenic methane can be produced from five coals ranging in rank from lignite to low-volatile bituminous using a coal-derived microbial consortium in batch microcosms with and without algal amendment. The addition of 0.1 g/l algal biomass resulted in maximum methane production rates up to 37 days earlier and decreased the time required to reach maximum methane production by 17-19 days when compared to unamended, analogous microcosms. Cumulative methane production and methane production rate were generally highest in low rank, subbituminous coals, but no clear association between increasing vitrinite reflectance and decreasing methane production could be determined. Microbial community analysis revealed that archaeal populations were correlated with methane production rate (p = 0.01), vitrinite reflectance (p = 0.03), percent volatile matter (p = 0.03), and fixed carbon (p = 0.02), all of which are related to coal rank and composition. Sequences indicative of the acetoclastic methanogenic genus Methanosaeta dominated low rank coal microcosms. Amended treatments that had increased methane production relative to unamended analogs had high relative abundances of the hydrogenotrophic methanogenic genus Methanobacterium and the bacterial family Pseudomonadaceae. These results suggest that algal amendment may shift coal-derived microbial communities towards coal-degrading bacteria and CO2-reducing methanogens. These results have broad implications for understanding subsurface carbon cycling in coal beds and the adoption of low carbon renewable microbially enhanced coalbed methane techniques across a diverse range of coal geology.

3.
Appl Environ Microbiol ; 89(1): e0189522, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36622180

RESUMO

A harmful algal bloom occurred in late spring 2019 across multiple, interconnected fjords and bays in northern Norway. The event was caused by the haptophyte Chrysochromulina leadbeateri and led to severe fish mortality at several salmon aquaculture facilities. This study reports on the spatial and temporal succession dynamics of the holistic marine microbiome associated with this bloom by relating all detectable 18S and 16S rRNA gene amplicon sequence variants to the relative abundance of the C. leadbeateri focal taxon. A k-medoid clustering enabled inferences on how the causative focal taxon cobloomed with diverse groups of bacteria and microeukaryotes. These coblooming patterns showed high temporal variability and were distinct between two geographically separated time series stations during the regional harmful algal bloom. The distinct blooming patterns observed with respect to each station were poorly connected to environmental conditions, suggesting that other factors, such as biological interactions, may be at least as important in shaping the dynamics of this type of harmful algal bloom. A deeper understanding of microbiome succession patterns during these rare but destructive events will help guide future efforts to forecast deviations from the natural bloom cycles of the northern Norwegian coastal marine ecosystems that are home to intensive aquaculture activities. IMPORTANCE The 2019 Chrysochromulina leadbeateri bloom in northern Norway had a major impact on the local economy and society through its devastating effect on the aquaculture industry. However, many fail to remember that C. leadbeateri is, in fact, a common member of the seasonal marine microbiome and the same spring phytoplankton blooms that support the marine ecosystem. It is challenging to draw any conclusions about exact causation behind the harmful bloom of 2019, especially since the natural bloom cycles of C. leadbeateri are not well understood. This study begins to fill major knowledge gaps that may lead to future forecasting abilities, by providing a molecular-based investigation of the destructive 2019 bloom that presents new insights into a seasonal marine microbial ecosystem during one of these sporadically reoccurring events.


Assuntos
Dinoflagellida , Haptófitas , Microbiota , Animais , Ecossistema , RNA Ribossômico 16S/genética , Proliferação Nociva de Algas , Fitoplâncton
4.
Front Microbiol ; 13: 892634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910621

RESUMO

Arctic marine environments are experiencing rapid changes due to the polar amplification of global warming. These changes impact the habitat of the cold-adapted microbial communities, which underpin biogeochemical cycles and marine food webs. We comparatively investigated the differences in prokaryotic and microeukaryotic taxa between summer surface water microbiomes sampled along a latitudinal transect from the ice-free southern Barents Sea and into the sea-ice-covered Nansen Basin to disentangle the dominating community (ecological) selection processes driving phylogenetic diversity. The community structure and richness of each site-specific microbiome were assessed in relation to the physical and biogeochemical conditions of the environment. A strong homogeneous deterministic selection process was inferred across the entire sampling transect via a phylogenetic null modeling approach. The microbial species richness and diversity were not negatively influenced by northward decreasing temperature and salinity. The results also suggest that regional phytoplankton blooms are a major prevalent factor in governing the bacterial community structure. This study supports the consideration that strong homogeneous selection is imposed across these cold-water marine environments uniformly, regardless of geographic assignments within either the Nansen Basin or the Barents Sea.

5.
Environ Sci Technol ; 56(5): 3225-3233, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35142487

RESUMO

Subsurface microbial (biogenic) methane production is an important part of the global carbon cycle that has resulted in natural gas accumulations in many coal beds worldwide. Laboratory studies suggest that complex carbon-containing nutrients (e.g., yeast or algae extract) can stimulate methane production, yet the effectiveness of these nutrients within coal beds is unknown. Here, we use downhole monitoring methods in combination with deuterated water (D2O) and a 200-liter injection of 0.1% yeast extract (YE) to stimulate and isotopically label newly generated methane. A total dissolved gas pressure sensor enabled real-time gas measurements (641 days preinjection and for 478 days postinjection). Downhole samples, collected with subsurface environmental samplers, indicate that methane increased 132% above preinjection levels based on isotopic labeling from D2O, 108% based on pressure readings, and 183% based on methane measurements 266 days postinjection. Demonstrating that YE enhances biogenic coalbed methane production in situ using multiple novel measurement methods has immediate implications for other field-scale biogenic methane investigations, including in situ methods to detect and track microbial activities related to the methanogenic turnover of recalcitrant carbon in the subsurface.


Assuntos
Carvão Mineral , Metano , Carbono , Gás Natural
6.
NPJ Biofilms Microbiomes ; 8(1): 7, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177633

RESUMO

Environmentally relevant metagenomes and BONCAT-FACS derived translationally active metagenomes from Powder River Basin coal seams were investigated to elucidate potential genes and functional groups involved in hydrocarbon degradation to methane in coal seams with high- and low-sulfate levels. An advanced subsurface environmental sampler allowed the establishment of coal-associated microbial communities under in situ conditions for metagenomic analyses from environmental and translationally active populations. Metagenomic sequencing demonstrated that biosurfactants, aerobic dioxygenases, and anaerobic phenol degradation pathways were present in active populations across the sampled coal seams. In particular, results suggested the importance of anaerobic degradation pathways under high-sulfate conditions with an emphasis on fumarate addition. Under low-sulfate conditions, a mixture of both aerobic and anaerobic pathways was observed but with a predominance of aerobic dioxygenases. The putative low-molecular-weight biosurfactant, lichysein, appeared to play a more important role compared to rhamnolipids. The methods used in this study-subsurface environmental samplers in combination with metagenomic sequencing of both total and translationally active metagenomes-offer a deeper and environmentally relevant perspective on community genetic potential from coal seams poised at different redox conditions broadening the understanding of degradation strategies for subsurface carbon.


Assuntos
Carvão Mineral , Microbiota , Metagenômica , Metano , Sulfatos
7.
ISME J ; 16(4): 915-926, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34689183

RESUMO

Microbial metabolisms and interactions that facilitate subsurface conversions of recalcitrant carbon to methane are poorly understood. We deployed an in situ enrichment device in a subsurface coal seam in the Powder River Basin (PRB), USA, and used BONCAT-FACS-Metagenomics to identify translationally active populations involved in methane generation from a variety of coal-derived aromatic hydrocarbons. From the active fraction, high-quality metagenome-assembled genomes (MAGs) were recovered for the acetoclastic methanogen, Methanothrix paradoxum, and a novel member of the Chlorobi with the potential to generate acetate via the Pta-Ack pathway. Members of the Bacteroides and Geobacter also encoded Pta-Ack and together, all four populations had the putative ability to degrade ethylbenzene, phenylphosphate, phenylethanol, toluene, xylene, and phenol. Metabolic reconstructions, gene analyses, and environmental parameters also indicated that redox fluctuations likely promote facultative energy metabolisms in the coal seam. The active "Chlorobi PRB" MAG encoded enzymes for fermentation, nitrate reduction, and multiple oxygenases with varying binding affinities for oxygen. "M. paradoxum PRB" encoded an extradiol dioxygenase for aerobic phenylacetate degradation, which was also present in previously published Methanothrix genomes. These observations outline underlying processes for bio-methane from subbituminous coal by translationally active populations and demonstrate activity-based metagenomics as a powerful strategy in next generation physiology to understand ecologically relevant microbial populations.


Assuntos
Metagenômica , Metano , Carvão Mineral , Metagenoma , Metano/metabolismo , Methanosarcinaceae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...